Abstract

Fluorescence lifetime microscopy imaging (FLIM) is an optic technique that allows a quantitative characterization of the fluorescent components of a sample. However, for an accurate interpretation of FLIM, an initial processing step is required to deconvolve the instrument response of the system from the measured fluorescence decays. In this paper, we present a novel strategy for the deconvolution of FLIM data based on a library of exponentials. Our approach searches for the scaling coefficients of the library by non-negative least squares approximations plus Thikonov/l2 or l1 regularization terms. The parameters of the library are given by the lower and upper bounds in the characteristic lifetimes of the exponential functions and the size of the library, where we observe that this last variable is not a limiting factor in the resulting fitting accuracy. We compare our proposal to nonlinear least squares and global non-linear least squares estimations with a multi-exponential model, and also to constrained Laguerre-base expansions, where we visualize an advantage of our proposal based on Thikonov/l2 regularization in terms of estimation accuracy, computational time, and tuning strategy. Our validation strategy considers synthetic datasets subject to both shot and Gaussian noise and samples with different lifetime maps, and experimental FLIM data of ex-vivo atherosclerotic plaques and human breast cancer cells.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images

Yongliang Zhang, Yu Chen, and David Day-Uei Li
Opt. Express 24(13) 13894-13905 (2016)

Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy

Daniel U. Campos-Delgado, O. Gutiérrez Navarro, E. R. Arce-Santana, and Javier A. Jo
Biomed. Opt. Express 6(6) 2088-2105 (2015)

Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection

Yongliang Zhang, Annie Cuyt, Wen-shin Lee, Giovanni Lo Bianco, Gang Wu, Yu Chen, and David Day-Uei Li
Opt. Express 24(23) 26777-26791 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC, 2014).
    [Crossref]
  2. N. Anthony, K. Berland, and P. Guo, “Principles of fluorescence for quantitative fluorescence microscopy,” in FLIM Microscopy in Biology and Medicine, A. Periasamy and R. M. Clegg, eds. (Chapman and Hall/CRC, 2009), pp. 35–63.
    [Crossref]
  3. A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall/CRC, 2009).
  4. S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
    [Crossref] [PubMed]
  5. M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
    [Crossref]
  6. J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
    [Crossref]
  7. V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
    [Crossref] [PubMed]
  8. N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
    [Crossref] [PubMed]
  9. J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
    [Crossref] [PubMed]
  10. M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
    [Crossref] [PubMed]
  11. A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
    [Crossref] [PubMed]
  12. A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
    [Crossref] [PubMed]
  13. B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
    [Crossref]
  14. S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
    [Crossref] [PubMed]
  15. S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
    [Crossref] [PubMed]
  16. J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
    [Crossref] [PubMed]
  17. A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
    [Crossref] [PubMed]
  18. P. Pande and J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58(1), 172–181 (2011).
    [Crossref]
  19. J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
    [Crossref] [PubMed]
  20. O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
    [Crossref] [PubMed]
  21. O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
    [Crossref] [PubMed]
  22. H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
    [Crossref]
  23. F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
    [Crossref]
  24. F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
    [Crossref]
  25. D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
    [Crossref]
  26. J. Zhang and B. Morini, “Solving regularized linear least-squares problems by the alternating direction method with application to image restoration,” Electron. Trans. Numer. Anal. 40, 356–372 (2013).
  27. P. Gong and C. Zhang, “A fast dual projected newton method for l1-regularized least squares,” in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence2, 1275–1280 (2011).
  28. G. Landi, “A modified newton projection method for l1-regularized least squares image deblurring,” J. Math. Imaging Vis. 51(1), 195–208 (2015).
    [Crossref]
  29. M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
    [Crossref]
  30. K. Vishwanath and M. A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29(13), 1512–1514 (2004).
    [Crossref] [PubMed]
  31. J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 4th ed. (Prentice Hall, 2006).
  32. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, 2006).
  33. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
    [Crossref]
  34. The MathWorks Inc., Parallel computing toolbox user’s guide R2015a, http://www.mathworks.com/help/pdfdoc/distcomp/distcomp.pdf .
  35. The MathWorks Inc., Optimization toolbox user’s guide R2015a, http://www.mathworks.com/help/pdf_doc/op-tim/optimtb.pdf .

2015 (2)

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

G. Landi, “A modified newton projection method for l1-regularized least squares image deblurring,” J. Math. Imaging Vis. 51(1), 195–208 (2015).
[Crossref]

2014 (4)

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
[Crossref]

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

2013 (5)

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
[Crossref]

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

J. Zhang and B. Morini, “Solving regularized linear least-squares problems by the alternating direction method with application to image restoration,” Electron. Trans. Numer. Anal. 40, 356–372 (2013).

2012 (2)

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

2011 (2)

P. Pande and J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58(1), 172–181 (2011).
[Crossref]

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
[Crossref]

2010 (2)

S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

2009 (3)

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref]

2008 (1)

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

2004 (3)

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

K. Vishwanath and M. A. Mycek, “Do fluorescence decays remitted from tissues accurately reflect intrinsic fluorophore lifetimes?” Opt. Lett. 29(13), 1512–1514 (2004).
[Crossref] [PubMed]

2001 (1)

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

1998 (1)

M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
[Crossref] [PubMed]

Afonso, M. V.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
[Crossref]

Alexandrov, Y.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Alibhai, D.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Anthony, N.

N. Anthony, K. Berland, and P. Guo, “Principles of fluorescence for quantitative fluorescence microscopy,” in FLIM Microscopy in Biology and Medicine, A. Periasamy and R. M. Clegg, eds. (Chapman and Hall/CRC, 2009), pp. 35–63.
[Crossref]

Applegate, B.

Applegate, B. E.

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

ArceSantana, E. R.

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

Arce-Santana, E.

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

Arce-Santana, E. R.

Arteaga, C. L.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Aurisicchio, L.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

Berland, K.

N. Anthony, K. Berland, and P. Guo, “Principles of fluorescence for quantitative fluorescence microscopy,” in FLIM Microscopy in Biology and Medicine, A. Periasamy and R. M. Clegg, eds. (Chapman and Hall/CRC, 2009), pp. 35–63.
[Crossref]

Bioucas-Dias, J. M.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
[Crossref]

Blab, G. A.

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
[Crossref]

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
[Crossref]

Bouma, B. E.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Campos-Delgado, D.

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

Campos-Delgado, D. U.

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

Cheng, S.

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Cheng, Y.-S. L.

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Chu, A.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Cicchi, R.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

Ciliberto, G.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

Clegg, R. M.

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall/CRC, 2009).

Clubb, F.

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

Cole, M. J.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Cook, R. S.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Cuenca, R.

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Dabir, A. S.

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

De Giorgi, V.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

Dowling, K.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Dunsby, C.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Elson, D.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Elson, D. S.

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC, 2014).
[Crossref]

Fang, Q.

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

Fereidouni, F.

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
[Crossref]

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
[Crossref]

Figueiredo, M. A. T.

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
[Crossref]

Fort, L. S.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

French, P.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

French, P. M. W.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC, 2014).
[Crossref]

Galletly, N.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Garcia, E. V.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Gerritsen, H. C.

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
[Crossref]

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
[Crossref]

Gong, P.

P. Gong and C. Zhang, “A fast dual projected newton method for l1-regularized least squares,” in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence2, 1275–1280 (2011).

Guo, P.

N. Anthony, K. Berland, and P. Guo, “Principles of fluorescence for quantitative fluorescence microscopy,” in FLIM Microscopy in Biology and Medicine, A. Periasamy and R. M. Clegg, eds. (Chapman and Hall/CRC, 2009), pp. 35–63.
[Crossref]

GutierrezNavarro, O.

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

Gutierrez-Navarro, O.

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

Guttman, M. A.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Hicks, D. J.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Horn, R. A.

R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
[Crossref]

Jabbour, J.

Jabbour, J. M.

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Jo, J.

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

Jo, J. A.

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

P. Pande and J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58(1), 172–181 (2011).
[Crossref]

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

Johnson, C. R.

R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
[Crossref]

Jones, R.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Katan, M.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Kelly, D. J.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Lafontant, A.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Laiho, L. H.

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

Landi, G.

G. Landi, “A modified newton projection method for l1-regularized least squares image deblurring,” J. Math. Imaging Vis. 51(1), 195–208 (2015).
[Crossref]

Lee, B. K. C.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Lever, M. J.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Liu, J.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

Lotti, T.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

Maitland, K. C.

O. Gutierrez-Navarro, D. U. Campos-Delgado, E. R. Arce-Santana, K. C. Maitland, S. Cheng, J. Jabbour, B. Malik, R. Cuenca, and J. A. Jo, “Estimation of the number of fluorescent end-members for quantitative analysis of multispectral FLIM data,” Opt. Express 22(10), 12255–12272 (2014).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Malik, B.

Malik, B. H.

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Manning, H. C.

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Manolakis, D. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 4th ed. (Prentice Hall, 2006).

Marcu, L.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC, 2014).
[Crossref]

Margineanu, A.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Massi, D.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

McGinty, J.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

McVeigh, E. R.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Mendez, M.

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

Morini, B.

J. Zhang and B. Morini, “Solving regularized linear least-squares problems by the alternating direction method with application to image restoration,” Electron. Trans. Numer. Anal. 40, 356–372 (2013).

Munro, I.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Mycek, M.

M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
[Crossref] [PubMed]

Mycek, M. A.

Neil, M.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Nishioka, N.

M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
[Crossref] [PubMed]

Nocedal, J.

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, 2006).

O’Donnell, M.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Pande, P.

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

P. Pande and J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58(1), 172–181 (2011).
[Crossref]

S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

Papaioannou, T.

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

Park, J.

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

Pavone, F.S.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

Pelet, S.

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

Periasamy, A.

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall/CRC, 2009).

Previte, M. J. R.

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

Proakis, J. G.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 4th ed. (Prentice Hall, 2006).

Qi, J.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

Requejo-Isidro, J.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Rice, B. W.

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref]

Ryu, Y.

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

Sanders, M. E.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

Schomacker, K.

M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
[Crossref] [PubMed]

Sestini, S.

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

Shrestha, S.

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

S. Shrestha, B. Applegate, J. Park, X. Xiao, P. Pande, and J. Jo, “High-speed multispectral fluorescence lifetime imaging implementation for in vivo applications,” Opt. Lett. 35(15), 2558–2560 (2010).
[Crossref] [PubMed]

Siegel, J.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Skala, M. C.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

So, P. T. C.

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

Stamp, G.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Strauss, H. W.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Sun, Y.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

Talbot, C.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Tanaka, A.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Tearney, G. J.

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Teixeira, F.

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Trivedi, C. A.

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

Vishwanath, K.

Walsh, A. J.

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Warren, S. C.

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Webb, S. E. D.

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

Wright, J.

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

Wright, S. J.

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, 2006).

Xiao, X.

Xu, H.

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref]

Zhang, C.

P. Gong and C. Zhang, “A fast dual projected newton method for l1-regularized least squares,” in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence2, 1275–1280 (2011).

Zhang, J.

J. Zhang and B. Morini, “Solving regularized linear least-squares problems by the alternating direction method with application to image restoration,” Electron. Trans. Numer. Anal. 40, 356–372 (2013).

Atherosclerosis (1)

J. Park, P. Pande, S. Shrestha, F. Clubb, B. E. Applegate, and J. A. Jo, “Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy,” Atherosclerosis 220(2), 394–401 (2012).
[Crossref]

Biomed Opt. Express (1)

D. U. Campos-Delgado, O. GutierrezNavarro, E. R. ArceSantana, and J. A. Jo, “Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy””, Biomed Opt. Express 6(6), 2088–2105 (2015).
[Crossref]

Biophys. J. (1)

S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87(4), 2807–2817 (2004).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

N. Galletly, J. McGinty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. Elson, M. Neil, A. Chu, P. French, and G. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin,” Br. J. Dermatol. 159(1), 152–161 (2008).
[Crossref] [PubMed]

Cancer Res. (2)

A. J. Walsh, R. S. Cook, M. E. Sanders, L. Aurisicchio, G. Ciliberto, C. L. Arteaga, and M. C. Skala, “Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer,” Cancer Res. 74(8), 5184–5194 (2014).
[Crossref] [PubMed]

A. J. Walsh, R. S. Cook, H. C. Manning, D. J. Hicks, A. Lafontant, C. L. Arteaga, and M. C. Skala, “Optical metabolic imaging identifies breast cancer glycolytic levels, sub-types, and early treatment response,” Cancer Res. 73(20), 6164–6174 (2013).
[Crossref] [PubMed]

Electron. Trans. Numer. Anal. (1)

J. Zhang and B. Morini, “Solving regularized linear least-squares problems by the alternating direction method with application to image restoration,” Electron. Trans. Numer. Anal. 40, 356–372 (2013).

Gastrointest. Endosc. (1)

M. Mycek, K. Schomacker, and N. Nishioka, “Colonic polyp differentiation using time-resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48(4), 390–394 (1998).
[Crossref] [PubMed]

IEEE J. Biomed. Health Inform. (1)

O. Gutierrez-Navarro, D. Campos-Delgado, E. Arce-Santana, M. Mendez, and J. Jo, “Blind end-member and abundance extraction for multi-spectral fluorescence lifetime imaging microscopy data,” IEEE J. Biomed. Health Inform. 18(2), 606–617 (2014).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

P. Pande and J. A. Jo, “Automated analysis of fluorescence lifetime imaging microscopy (FLIM) data based on the Laguerre deconvolution method,” IEEE Trans. Biomed. Eng. 58(1), 172–181 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Trans. Image Process. 20(3), 681–695 (2011).
[Crossref]

J. Biomed. Opt. (5)

H. Xu and B. W. Rice, “In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique,” J. Biomed. Opt. 14(6), 064011 (2009).
[Crossref]

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Blind unmixing of spectrally resolved lifetime images,” J. Biomed. Opt. 18(8), 086006 (2013).
[Crossref]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt. 9(4), 743–752 (2004).
[Crossref] [PubMed]

A. S. Dabir, C. A. Trivedi, Y. Ryu, P. Pande, and J. A. Jo, “Fully automated deconvolution method for on-line analysis of time-resolved fluorescence spectroscopy data based on an iterative Laguerre expansion technique,” J. Biomed. Opt. 14(2), 024030 (2009).
[Crossref] [PubMed]

J. M. Jabbour, S. Cheng, B. H. Malik, R. Cuenca, J. A. Jo, J. Wright, Y.-S. L. Cheng, and K. C. Maitland, “Fluorescence lifetime imaging and reflectance confocal microscopy for multiscale imaging of oral precancer,” J. Biomed. Opt. 18(4), 046012 (2013).
[Crossref] [PubMed]

J. Biophys. (1)

B. K. C. Lee, J. Siegel, S. E. D. Webb, L. S. Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. W. French, “Application of the stretched exponential function to fluorescence lifetime imaging,” J. Biophys. 81(3), 1265–1274 (2001).
[Crossref]

J. Eur. Acad. Dermatol. Venereol. (1)

V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F.S. Pavone, and T. Lotti, “Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences,” J. Eur. Acad. Dermatol. Venereol. 23(3), 314–316 (2009).
[Crossref] [PubMed]

J. Math. Imaging Vis. (1)

G. Landi, “A modified newton projection method for l1-regularized least squares image deblurring,” J. Math. Imaging Vis. 51(1), 195–208 (2015).
[Crossref]

J. Nucl. Med. (1)

M. O’Donnell, E. R. McVeigh, H. W. Strauss, A. Tanaka, B. E. Bouma, G. J. Tearney, M. A. Guttman, and E. V. Garcia, “Multimodality cardiovascular molecular imaging technology,” J. Nucl. Med. 51(1), 38S–50S (2010).
[Crossref]

Methods Appl. Fluoresc. (1)

F. Fereidouni, G. A. Blab, and H. C. Gerritsen, “Phasor based analysis of FRET images recorded using spectrally resolved lifetime imaging,” Methods Appl. Fluoresc. 2(3), 035001 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol. 57(4), 843–865 (2012).
[Crossref] [PubMed]

PLOS One (1)

S. C. Warren, A. Margineanu, D. Alibhai, D. J. Kelly, C. Talbot, Y. Alexandrov, I. Munro, M. Katan, C. Dunsby, and P. M. W. French, “Rapid global fitting of large fluorescence lifetime imaging microscopy datasets,” PLOS One 8(8), e70687 (2013).
[Crossref] [PubMed]

Other (9)

P. Gong and C. Zhang, “A fast dual projected newton method for l1-regularized least squares,” in Proceedings of the Twenty-Second international joint conference on Artificial Intelligence2, 1275–1280 (2011).

L. Marcu, P. M. W. French, and D. S. Elson, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics (CRC, 2014).
[Crossref]

N. Anthony, K. Berland, and P. Guo, “Principles of fluorescence for quantitative fluorescence microscopy,” in FLIM Microscopy in Biology and Medicine, A. Periasamy and R. M. Clegg, eds. (Chapman and Hall/CRC, 2009), pp. 35–63.
[Crossref]

A. Periasamy and R. M. Clegg, FLIM Microscopy in Biology and Medicine (Chapman and Hall/CRC, 2009).

J. G. Proakis and D. G. Manolakis, Digital Signal Processing, 4th ed. (Prentice Hall, 2006).

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. (Springer-Verlag, 2006).

R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
[Crossref]

The MathWorks Inc., Parallel computing toolbox user’s guide R2015a, http://www.mathworks.com/help/pdfdoc/distcomp/distcomp.pdf .

The MathWorks Inc., Optimization toolbox user’s guide R2015a, http://www.mathworks.com/help/pdf_doc/op-tim/optimtb.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 FLIM observation model.
Fig. 2
Fig. 2 Resulting libraries for Ts = 250 ps, τmin = 0.25 ns, τmax = 15 ns and N = 25: (a) exponential functions and (b) fluorescence decays.
Fig. 3
Fig. 3 Abundance maps for synthetic datasets (A), (B) and (C) of 2nd, 3rd, and 4th order, respectively.
Fig. 4
Fig. 4 Case I: Validation test of the number of elements in the library of exponential functions N ∈ {25,50,75,100,125} at different pairs of PSNRs and SNRs in the synthetic datasets (A) (solid lines), (B) (dashed lines) and (C) (cross and dotted lines) of 2nd, 3rd and 4th order, respectively.
Fig. 5
Fig. 5 Case II: Validation test of weight parameter α ∈ [0.0001, 1.0] for PSNR=20 dB, SNR=50 dB, and N = 25 with synthetic datasets (A) (solid line), (B) (dashed line) and (C) (cross and dotted line) of 2nd, 3rd and 4th order, respectively.
Fig. 6
Fig. 6 Case III: Validation test of different deconvolution techniques by computing average lifetime maps at PSNR=20 dB, SNR=50 dB, N = 25 and α = 0.001 with synthetic datasets (A), (B) and (C) of 2nd, 3rd, and 4th order, respectively.
Fig. 7
Fig. 7 Case IV: Validation test of different deconvolution techniques by computing average lifetime maps in a sample with short characteristic lifetimes at PSNR=20 dB, SNR=50 dB, N = 25 and α = 0.001.
Fig. 8
Fig. 8 Case V: Validation test for photon economy in the synthetic FLIM datasets by using different pairs of PSNRs and SNRs at N = 25 and α = 0.001.
Fig. 9
Fig. 9 Estimation performance in ex-vivo atherosclerotic plaques datasets by different deconvolution techniques.
Fig. 10
Fig. 10 Estimated average lifetime maps in ex-vivo atherosclerotic plaques datasets by different deconvolution techniques.
Fig. 11
Fig. 11 Estimation performance in human breast cancer cell datasets by different deconvolution techniques.
Fig. 12
Fig. 12 Estimated average lifetime maps in human breast cancer cell datasets by different deconvolution techniques.

Tables (4)

Tables Icon

Table 1 List of Acronyms.

Tables Icon

Table 2 Characteristic lifetimes in synthetic datasets (A), (B) and (C) of 2nd, 3rd and 4th order, respectively.

Tables Icon

Table 3 Case I: Estimation performance in GoFLT for PSNR=20 dB and SNR=50 dB in the synthetic datasets (A), (B) and (C) of 2nd, 3rd and 4th order, respectively.

Tables Icon

Table 4 Case III: Performance Quantification of Synthetic Datasets for DELE-L2, DELE-L1, DELB, DENLS and DEGNLS at PSNR=20 dB, SNR=50 dB, and N = 25.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

y k [ l ] = h k [ l ] u [ l ] + v k [ l ] = j = 0 L 1 u [ l j ] h k [ j ] + v k [ l ] l [ 0 , L 1 ] , k [ 0 , K 1 ]
[ y k [ 0 ] y k [ 1 ] y k [ L 1 ] ] y k L = [ u [ 0 ] 0 0 u [ 1 ] u [ 0 ] 0 u [ L 1 ] u [ L 2 ] u [ 0 ] ] U k L [ h k [ 0 ] h k [ 1 ] h k [ L 1 ] ] h k L + [ v k [ 0 ] v k [ 1 ] v k [ L 1 ] ] v k L ,
y k = U h k + v k k [ 0 , K 1 ] ,
l = 0 L 1 u [ l ] = 1 & u [ l ] 0 l [ 0 , L 1 ] ,
h k [ l ] = c k , 1 e l / τ 1 + c k , 2 e l / τ 2 + + c k , N e l / τ N + c k , N + 1 l [ 0 , L 1 ] ,
Ω = { y L | y = n = 1 N + 1 c n U b n c n & c n 0 }
y k = UB c k + v k k [ 0 , K 1 ] .
B = [ b 1 b N + 1 ] L × ( N + 1 )
c k = [ c k , 1 c k . N + 1 ] N + 1 ,
min c k ¯ 0 1 2 y k UB c k 2 + α 2 n = 1 N ( c k , n ) 2 = min c k ¯ 0 1 2 [ α diag ( [ 1 N 0 ] ) UB ] c k [ y k 0 N + 1 ] 2 ,
min c k ¯ 0 1 2 y k UB c k 2 + α 2 n = 1 N c k , n = min c k ¯ 0 1 2 y k UB c k 2 + α 2 [ 1 N 0 ] c k .
h k [ l ] = i = 1 2 , 3 o r 4 δ k , i e l T τ i + δ o k [ 0 , K 1 ] , l [ 0 , L 1 ] ,
y k [ l ] = y k o [ l ] + y k o [ l ] ω k [ l ] + v k [ l ] l [ 0 , L 1 ]
PSNR = 10 log 10 max l [ 0 , L 1 ] y k o [ l ] σ k 2 k [ 0 , K 1 ] , SNR = 10 log 10 l = 0 L 1 ( y k o [ l ] ) 2 ζ k 2
G o F H = 1 K k = 0 K 1 [ 1 | | h k h ^ k | | | | h k h ¯ | | ] G o F Y = 1 K k = 0 K 1 [ 1 | | y k y ^ k | | | | y k y ¯ | | ] E H = k = 0 K 1 h k h ^ k 2 k = 0 K 1 h k 2 E Y = k = 0 K 1 y k y ^ k 2 k = 0 K 1 y k 2
τ k = t h k 1 L h k & τ ^ k = t h ^ k 1 L h ^ k ,
G o F L T = 100 × 1 K k = 0 K 1 | τ k τ ^ k | τ k .

Metrics