Abstract

An experimental demonstration of direct-detection single-sideband Nyquist-pulse-shaped 16-QAM subcarrier modulated (Nyquist-SCM) transmission implementing a receiver-based signal-signal beat interference (SSBI) cancellation technique is described. The performance improvement with SSBI mitigation, which compensates for the nonlinear distortion caused by square-law detection, was quantified by simulations and experiments for a 7 × 25 Gb/s WDM Nyquist-SCM signal with a net optical information spectral density (ISD) of 2.0 (b/s)/Hz. A reduction of 3.6 dB in the back-to-back required OSNR at the HD-FEC threshold was achieved. The resulting reductions in BER in single channel and WDM transmission over distances of up to 800 km of uncompensated standard single-mode fiber (SSMF) achieved are presented.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nyquist-shaped dispersion-precompensated subcarrier modulation with direct detection for spectrally-efficient WDM transmission

M. S. Erkılınç, S. Kilmurray, R. Maher, M. Paskov, R. Bouziane, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey
Opt. Express 22(8) 9420-9431 (2014)

Comparison of digital signal-signal beat interference compensation techniques in direct-detection subcarrier modulation systems

Zhe Li, M. Sezer Erkilinc, Lidia Galdino, Kai Shi, Benn C. Thomsen, Polina Bayvel, and Robert I. Killey
Opt. Express 24(25) 29176-29189 (2016)

Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping

Meng Xiang, Songnian Fu, Ming Tang, Haoyuan Tang, Perry Shum, and Deming Liu
Opt. Express 22(14) 17448-17457 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Alcatel-Lucent, “Bell labs metro network traffic growth: architecture impact study,” Strategic White Paper (2013).
  2. Cisco, “Cisco visual networking index: forecast and methodology, 2013-2018,” (2014).
  3. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in European Conference and Exhibition on Optical Communication (ECOC, 2009), paper 1,2.
  4. J.-X. Cai, Y. Sun, H. G. Batshon, M. Mazurczyk, H. Zhang, D. G. Foursa, and A. N. Pilipetskii, “54 Tb/s transmission over 9,150 km with optimized hybrid Raman-EDFA amplification and coded modulation,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper PD.3.3.
    [Crossref]
  5. J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
    [Crossref] [PubMed]
  6. S. Beppu, M. Yoshida, K. Kasai, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (OSA, 2014), paper W1A.6.
    [Crossref]
  7. T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
    [Crossref]
  8. ADVA, Efficient 100G Transport (2014). http://www.advaoptical.com/en/innovation/100g-transport.aspx .
  9. A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (OSA, 2009), paper OTuE.1.
  10. A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
    [Crossref]
  11. M. S. Erkılınç, S. Kilmurray, R. Maher, M. Paskov, R. Bouziane, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Nyquist-shaped dispersion-precompensated subcarrier modulation with direct detection for spectrally-efficient WDM transmission,” Opt. Express 22(8), 9420–9431 (2014).
    [Crossref] [PubMed]
  12. M. S. Erkılınç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Performance comparison of single sideband direct-detection Nyquist-subcarrier modulation and OFDM,” J. Lightwave Technol. 33(10), 2038–2046 (2015).
    [Crossref]
  13. A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express 16(2), 860–865 (2008).
    [Crossref] [PubMed]
  14. S. A. Nezamalhosseini, L. R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21(13), 15237–15246 (2013).
    [Crossref] [PubMed]
  15. J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
    [Crossref] [PubMed]
  16. C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems,” Opt. Express 22(6), 7269–7283 (2014).
    [Crossref] [PubMed]
  17. C. Ju, X. Chen, N. Liu, and L. Wang, “SSII cancellation in 40 Gbps VSB-IMDD OFDM system based on symbol pre-distortion,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P.7.9.
  18. N. Liu, C. Ju, and X. Chen, “Nonlinear ISI cancellation in VSSB Nyquist-SCM system with symbol pre-distortion,” Opt. Commun. 338, 492–495 (2015).
    [Crossref]
  19. W. R. Peng, X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]
  20. H. Shi, P. Yang, C. Ju, X. Chen, J. Bei, and R. Hui, “SSBI cancellation based on time diversity reception in SSB-DD-OOFDM transmission systems,” in Conference on Lasers and Electro-optics (CLEO, 2014), paper JTh2A.14.
    [Crossref]
  21. Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Direct-detection 16-QAM Nyquist-shaped subcarrier modulation with SSBI mitigation,” in Proceedings of IEEE International Conference on Communications (ICC, 2015), to be published.
  22. X. Zhang, J. Li, and Z. Li, “SSBI cancellation method for IMDD-OFDM System with a single photodiode,” in Progress In Electromagnatics Research Symposium (PIERS 2014), pp. 2719.
  23. H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightwave Technol. 26(1), 158–167 (2008).
    [Crossref]
  24. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
    [Crossref]
  25. M. S. Erkılınc, Z. Li, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally-efficient WDM Nyquist pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightwave Technol. 33(15), 3147–3155 (2015).
    [Crossref]
  26. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 3rd ed. (Academic, 2010).
  27. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27(3), 379–423 (1948).
    [Crossref]

2015 (3)

2014 (3)

2013 (3)

2012 (1)

T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
[Crossref]

2009 (1)

2008 (2)

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27(3), 379–423 (1948).
[Crossref]

Arbab, V. R.

Bayvel, P.

Bouziane, R.

Buchali, F.

Bülow, H.

Capmany, J.

Cartledge, J. C.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Chen, L. R.

Chen, X.

N. Liu, C. Ju, and X. Chen, “Nonlinear ISI cancellation in VSSB Nyquist-SCM system with symbol pre-distortion,” Opt. Commun. 338, 492–495 (2015).
[Crossref]

Chi, N.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Chi, S.

Christen, L. C.

Erkilinc, M. S.

Erkilinç, M. S.

Fang, Y.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Feng, K. M.

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Griesser, H.

Gringeri, S.

T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
[Crossref]

Ju, C.

N. Liu, C. Ju, and X. Chen, “Nonlinear ISI cancellation in VSSB Nyquist-SCM system with symbol pre-distortion,” Opt. Commun. 338, 492–495 (2015).
[Crossref]

Karar, A. S.

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

Killey, R. I.

Kilmurray, S.

Klekamp, A.

Li, Z.

M. S. Erkılınc, Z. Li, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally-efficient WDM Nyquist pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightwave Technol. 33(15), 3147–3155 (2015).
[Crossref]

Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Direct-detection 16-QAM Nyquist-shaped subcarrier modulation with SSBI mitigation,” in Proceedings of IEEE International Conference on Communications (ICC, 2015), to be published.

Liu, N.

N. Liu, C. Ju, and X. Chen, “Nonlinear ISI cancellation in VSSB Nyquist-SCM system with symbol pre-distortion,” Opt. Commun. 338, 492–495 (2015).
[Crossref]

Lowery, A. J.

Ma, J.

Maher, R.

Malekiha, M.

Marvasti, F.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Nezamalhosseini, S. A.

Ortega, B.

Pachnicke, S.

Paskov, M.

Peng, W. R.

Plant, D. V.

Sánchez, C.

Shamee, B.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27(3), 379–423 (1948).
[Crossref]

Thomsen, B. C.

Tomizawa, M.

T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
[Crossref]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Willner, A. E.

Wu, X.

Xia, T. J.

T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
[Crossref]

Yang, J. Y.

Yu, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Zhuge, Q.

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27(3), 379–423 (1948).
[Crossref]

IEEE Commun. Mag. (1)

T. J. Xia, S. Gringeri, and M. Tomizawa, “High- capacity optical transport networks,” IEEE Commun. Mag. 50(11), 170–178 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. S. Karar and J. C. Cartledge, “Generation and detection of a 56 Gb/s signal using a DML and half-cycle 16-QAM Nyquist-SCM,” IEEE Photonics Technol. Lett. 25(8), 757–760 (2013).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

J. Lightwave Technol. (3)

Opt. Commun. (1)

N. Liu, C. Ju, and X. Chen, “Nonlinear ISI cancellation in VSSB Nyquist-SCM system with symbol pre-distortion,” Opt. Commun. 338, 492–495 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

J. Zhang, J. Yu, Y. Fang, and N. Chi, “High speed all optical Nyquist signal generation and full-band coherent detection,” Sci. Rep. 4, 6156 (2014).
[Crossref] [PubMed]

Other (12)

S. Beppu, M. Yoshida, K. Kasai, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (OSA, 2014), paper W1A.6.
[Crossref]

ADVA, Efficient 100G Transport (2014). http://www.advaoptical.com/en/innovation/100g-transport.aspx .

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (OSA, 2009), paper OTuE.1.

Alcatel-Lucent, “Bell labs metro network traffic growth: architecture impact study,” Strategic White Paper (2013).

Cisco, “Cisco visual networking index: forecast and methodology, 2013-2018,” (2014).

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” in European Conference and Exhibition on Optical Communication (ECOC, 2009), paper 1,2.

J.-X. Cai, Y. Sun, H. G. Batshon, M. Mazurczyk, H. Zhang, D. G. Foursa, and A. N. Pilipetskii, “54 Tb/s transmission over 9,150 km with optimized hybrid Raman-EDFA amplification and coded modulation,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper PD.3.3.
[Crossref]

C. Ju, X. Chen, N. Liu, and L. Wang, “SSII cancellation in 40 Gbps VSB-IMDD OFDM system based on symbol pre-distortion,” in European Conference and Exhibition on Optical Communication (ECOC, 2014), paper P.7.9.

H. Shi, P. Yang, C. Ju, X. Chen, J. Bei, and R. Hui, “SSBI cancellation based on time diversity reception in SSB-DD-OOFDM transmission systems,” in Conference on Lasers and Electro-optics (CLEO, 2014), paper JTh2A.14.
[Crossref]

Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Direct-detection 16-QAM Nyquist-shaped subcarrier modulation with SSBI mitigation,” in Proceedings of IEEE International Conference on Communications (ICC, 2015), to be published.

X. Zhang, J. Li, and Z. Li, “SSBI cancellation method for IMDD-OFDM System with a single photodiode,” in Progress In Electromagnatics Research Symposium (PIERS 2014), pp. 2719.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 3rd ed. (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 System architecture for (a) single channel and (b) WDM transmission system.
Fig. 2
Fig. 2 Schematics of SSB QAM Nyquist-SCM signal generation: (a) Digital signal spectra (RRC filtering), up-conversion to the subcarrier frequency and sideband filtering. (b) Resulting optical signal spectrum.
Fig. 3
Fig. 3 Iterative decision SSBI cancellation technique [21].
Fig. 4
Fig. 4 Experimental setup for SSB 16QAM Nyquist-SCM transmission. Inset: Experimental spectra for WDM signal. (a) after OCG, (b) after transmitter and (c) transmitted and received signal.
Fig. 5
Fig. 5 (a) Transmitter and (b) receiver DSP design. CMA: Constant modulus algorithm. DD: Decision-directed. LMS: Least mean squares.
Fig. 6
Fig. 6 Back-to-back BER versus OSNR in simulations considering ideal transceiver, without and with SSBI compensation.
Fig. 7
Fig. 7 (a) Simulated and experimental BER versus OSNR without and with SSBI compensation (left). Experimental back-to-back received constellation (right) at the OSNR of 30.3 dB, (b) without (EVM = 14.45%) and (c) with (EVM = 10.20%) SSBI compensation.
Fig. 8
Fig. 8 Experimental back-to-back detected digital spectra at the OSNR of 30.3 dB, (a) without and with SSBI compensation and (b) reconstructed SSBI.
Fig. 9
Fig. 9 Simulated and experimental BER versus CSPR without and with SSBI compensation at an OSNR of (a) 21 dB, (b) 25 dB, and (c) 29 dB in back-to-back operation.
Fig. 10
Fig. 10 Experimental BER versus CSPR at different OSNRs (a) without and (b) with SSBI compensation in back-to-back operation. The dashed black line indicates the shift in the optimum CSPR value.
Fig. 11
Fig. 11 Experimental EVM versus the receiver iteration numbers at different OSNRs.
Fig. 12
Fig. 12 (a) Experimental BER versus optical launch power for 560 km single channel transmission, without and with SSBI compensation (left) and experimental 560 km transmission received constellation (right) (b) without (EVM = 17.63%) and (c) with (EVM = 14.15%) SSBI compensation at the optimum launch power.
Fig. 13
Fig. 13 (a) Experimental BER versus optical launch power for 800 km single channel transmission, without and with SSBI compensation (left) and experimental 800 km transmission received constellation (right) (b) without (EVM = 19.43%) and (c) with (EVM = 16.53%) SSBI compensation at the optimum launch power.
Fig. 14
Fig. 14 (a) Simulated and experimental BER versus optical launch power per channel for 240 km WDM transmission, without and with SSBI compensation (left) and experimental 240 km transmission constellations (right) (b) without (EVM = 18.93%) and (c) with (EVM = 15.55%) SSBI compensation at the optimum launch power.
Fig. 15
Fig. 15 (a) Simulated and experimental BER versus optical launch power per channel for 320 km WDM transmission, without and with SSBI compensation (left) and experimental 320 km transmission constellation (right) (b) without (EVM = 19.85%) and (c) with (EVM = 16.82%) SSBI compensation at optimum launch power.
Fig. 16
Fig. 16 (a) BER for each received channel over 320 km transmission without and with SSBI compensation. (b) Transmitted optical spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( ω , 0 ) = E ( ω , L ) H 1 ( ω ) = E ( ω , L ) exp ( j D 4 π c λ 2 ω 2 L )

Metrics