Abstract

In this work, we aim to increase the emission of the standard guest-host organic light emitting diode (OLED) thanks to localized surface plasmon and to investigate this effect in a microcavity. As a first step, we consider thermal deposition of silver clusters within an OLED guest-host stack. We investigate both the influence of the size of silver nanoparticles (Ag-NPs) and their position within the OLED heterostructure. Secondly, we study the optimized OLED within a microcavity formed by Al-cathode top mirror and a Distributed Bragg Reflector (DBR) bottom mirror. The experimental results show a substantial enhancement of the electroluminescence (EL) intensity as well as a reduction of the spectral width at a half maximum.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced electroluminescence of an organic light-emitting diode by localized surface plasmon using Al periodic structure

Roberto Fernandez Garcia, Lei Zeng, Samira Khadir, Mahmoud Chakaroun, Alexis P. A. Fischer, and Azzedine Boudrioua
J. Opt. Soc. Am. B 33(2) 246-252 (2016)

Exciton enhancement and exciplex quenching by plasmonic effect of Aluminum nanoparticle arrays in a blue organic light emitting diode

Samira Khadir, AmadouThierno Diallo, Mahmoud Chakaroun, and Azzedine Boudrioua
Opt. Express 25(9) 9812-9822 (2017)

Surface-plasmon-enhanced microcavity organic light-emitting diodes

Hongmei Zhang, Shufen Chen, and Dewei Zhao
Opt. Express 22(S7) A1776-A1782 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundementals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
    [Crossref]
  2. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [Crossref]
  3. U. Kreibig and M. Volner, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  4. M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D Appl. Phys. 48(18), 184004 (2015).
    [Crossref]
  5. R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
    [Crossref]
  6. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
    [Crossref] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  8. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).
  9. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
    [Crossref]
  10. C. D. Geddes and J. R. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [Crossref]
  11. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
    [Crossref]
  12. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [Crossref] [PubMed]
  13. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
    [Crossref]
  14. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
    [Crossref]
  15. F. Yan and X. W. Sun, “A plasmonically enhanced charge generation layer for tandem organic light emitting device,” Appl. Phys. Lett. 102(4), 043303 (2013).
    [Crossref]
  16. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
    [Crossref]
  17. B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
    [Crossref]
  18. V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [Crossref]
  19. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
    [Crossref]
  20. V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17(11), 2183–2190 (1999).
    [Crossref]
  21. H. Zhang, S. Chen, and D. Zhao, “Surface-plasmon-enhanced microcavity organic light-emitting diodes,” Opt. Express 22(S7), A1776–A1782 (2014).
    [Crossref] [PubMed]
  22. M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).
  23. M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
    [Crossref]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  25. E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  26. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
    [Crossref] [PubMed]
  27. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  28. K. Q. Le and P. Bienstman, “Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes,” Plasmonics 6(1), 53–57 (2011).
    [Crossref]
  29. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [Crossref]
  30. D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
    [Crossref]
  31. D. Hohertz and J. Gao, “How electrode work function affects doping and electroluminescence of polymer light emitting electrochemical cells,” J. Adv. Mater. 20(17), 3298–3302 (2008).
    [Crossref]
  32. P. Echlin, Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, (Springer, 2009).
  33. X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
    [Crossref]
  34. J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
    [Crossref]
  35. Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).
  36. A. Coens, M. Chakaroun, A. P. A. Fischer, M. W. Lee, A. Boudrioua, B. Geffroy, and G. Vemuri, “Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity,” Opt. Express 20(28), 29252–29259 (2012).
    [Crossref] [PubMed]
  37. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
    [Crossref]

2015 (1)

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D Appl. Phys. 48(18), 184004 (2015).
[Crossref]

2014 (2)

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

H. Zhang, S. Chen, and D. Zhao, “Surface-plasmon-enhanced microcavity organic light-emitting diodes,” Opt. Express 22(S7), A1776–A1782 (2014).
[Crossref] [PubMed]

2013 (4)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

F. Yan and X. W. Sun, “A plasmonically enhanced charge generation layer for tandem organic light emitting device,” Appl. Phys. Lett. 102(4), 043303 (2013).
[Crossref]

2012 (2)

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

A. Coens, M. Chakaroun, A. P. A. Fischer, M. W. Lee, A. Boudrioua, B. Geffroy, and G. Vemuri, “Experimental optimization of the optical and electrical properties of a half-wavelength-thick organic hetero-structure in a Micro-cavity,” Opt. Express 20(28), 29252–29259 (2012).
[Crossref] [PubMed]

2011 (3)

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

K. Q. Le and P. Bienstman, “Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes,” Plasmonics 6(1), 53–57 (2011).
[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundementals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

2010 (3)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (3)

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[Crossref] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

2008 (1)

D. Hohertz and J. Gao, “How electrode work function affects doping and electroluminescence of polymer light emitting electrochemical cells,” J. Adv. Mater. 20(17), 3298–3302 (2008).
[Crossref]

2006 (2)

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

2005 (2)

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005).
[Crossref] [PubMed]

2004 (2)

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
[Crossref]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

2003 (1)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

1999 (2)

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17(11), 2183–2190 (1999).
[Crossref]

1998 (1)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

1996 (1)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1946 (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Ahn, C. W.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[Crossref] [PubMed]

Akai-Kasaya, M.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Armstrong, R. L.

Baida, F. I.

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

Bazan, G. C.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Belkhir, A.

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

Berthelot, L.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Bienstman, P.

K. Q. Le and P. Bienstman, “Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes,” Plasmonics 6(1), 53–57 (2011).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Boudrioua, A.

Bulovic, V.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Buratto, S. K.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Burrows, P. E.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Bussian, D. A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Chakaroun, M.

Chen, K. L.

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

Chen, S.

Chen, Y. C.

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

Cheng, P. P.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Chilkoti, A.

Choi, K. C.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[Crossref] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coens, A.

Curry, A.

Deng, Y. H.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Feng, X. D.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
[Crossref]

Fernandez-Dominguez, A. I.

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Fernández-Garcia, R.

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Fina, M.

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

Fischer, A. P. A.

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Fujiki, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Gagnaire, A.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Gao, C. Y.

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

Gao, J.

D. Hohertz and J. Gao, “How electrode work function affects doping and electroluminescence of polymer light emitting electrochemical cells,” J. Adv. Mater. 20(17), 3298–3302 (2008).
[Crossref]

Garbuzov, D. Z.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Garcia, M. A.

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundementals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

Geffroy, B.

Giannini, V.

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Gomez Rivas, J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Gu, G.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Haes, A. J.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Hamidi, M.

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

Haynes, C. L.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Hohertz, D.

D. Hohertz and J. Gao, “How electrode work function affects doping and electroluminescence of polymer light emitting electrochemical cells,” J. Adv. Mater. 20(17), 3298–3302 (2008).
[Crossref]

Huang, C. J.

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Joseph, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Khalfin, V. B.

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

Khangura, R.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
[Crossref]

Kim, W.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Kuwahara, Y.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Lakowicz, J. R.

C. D. Geddes and J. R. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

Lamrous, O.

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

Le, K. Q.

K. Q. Le and P. Bienstman, “Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes,” Plasmonics 6(1), 53–57 (2011).
[Crossref]

Lee, M. W.

Lee, S. T.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Li, Y. Q.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Liu, D.

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Lu, Z. H.

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
[Crossref]

Maier, S. A.

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Malik, S.

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

Mao, S. S.

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

Masenelli, B.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

McFarland, A. D.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Meen, T. H.

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

Mehta, B. R.

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

Mikhailovsky, A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nusz, G.

Ostrowski, J. C.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Pound, R. V.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Purcell, E. M.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

Ren, L.

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

Rodriguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Ross, M. B.

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D Appl. Phys. 48(18), 184004 (2015).
[Crossref]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Safonov, V. P.

Saito, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Sarychev, A. K.

Schatz, G. C.

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D Appl. Phys. 48(18), 184004 (2015).
[Crossref]

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

V. A. Shubin, W. Kim, V. P. Safonov, A. K. Sarychev, R. L. Armstrong, and V. M. Shalaev, “Surface-plasmon-enhanced radiation effects in confined photonic systems,” J. Lightwave Technol. 17(11), 2183–2190 (1999).
[Crossref]

Shubin, V. A.

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Sonnefraud, Y.

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Sreenivasan, M. G.

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

Summers, M. A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Sun, X. W.

F. Yan and X. W. Sun, “A plasmonically enhanced charge generation layer for tandem organic light emitting device,” Appl. Phys. Lett. 102(4), 043303 (2013).
[Crossref]

Tang, J. X.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Tardy, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

Thigulla, S.

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

Torrey, H. C.

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Uemura, T.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Van Duyne, R. P.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Vemuri, G.

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

Wax, A.

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xiao, Y.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Xu, Z. Q.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Yan, F.

F. Yan and X. W. Sun, “A plasmonically enhanced charge generation layer for tandem organic light emitting device,” Appl. Phys. Lett. 102(4), 043303 (2013).
[Crossref]

Yang, J. P.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[Crossref] [PubMed]

Zettsu, N.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Zhang, H.

Zhao, D.

Zhu, J. J.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

Zou, S.

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Adv. Funct. Mater. (1)

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of Phosphorescence by Surface Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[Crossref]

Appl. Phys. Lett. (5)

X. D. Feng, R. Khangura, and Z. H. Lu, “Metal-organic-metal cathode for high-contrast organic light-emitting diodes,” Appl. Phys. Lett. 85(3), 497–500 (2004).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett. 100(1), 013308 (2012).
[Crossref]

F. Yan and X. W. Sun, “A plasmonically enhanced charge generation layer for tandem organic light emitting device,” Appl. Phys. Lett. 102(4), 043303 (2013).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. Liu, M. Fina, L. Ren, and S. S. Mao, “Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer,” Appl. Phys., A Mater. Sci. Process. 96(2), 353–356 (2009).
[Crossref]

Contemp. Phys. (1)

R. Fernández-Garcia, Y. Sonnefraud, A. I. Fernandez-Dominguez, V. Giannini, and S. A. Maier, “Design considerations for near-field enhancement in optical antennas,” Contemp. Phys. 55(1), 1–11 (2014).
[Crossref]

J. Adv. Mater. (1)

D. Hohertz and J. Gao, “How electrode work function affects doping and electroluminescence of polymer light emitting electrochemical cells,” J. Adv. Mater. 20(17), 3298–3302 (2008).
[Crossref]

J. Appl. Phys. (3)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[Crossref]

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, and J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85(6), 3032–3037 (1999).
[Crossref]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80(12), 6954–6964 (1996).
[Crossref]

J. Fluoresc. (1)

C. D. Geddes and J. R. Lakowicz, “Editorial: metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Nanomater. (2)

Y. C. Chen, C. Y. Gao, K. L. Chen, T. H. Meen, and C. J. Huang, “Enhancement and quenching of fluorescence by silver nanoparticles in organic light-emitting diode,” J. Nanomater. 2013, 841436 (2013).

M. G. Sreenivasan, S. Malik, S. Thigulla, and B. R. Mehta, “Dependence of plasmonic properties of silver island films on nanoparticle size and substrate coverage,” J. Nanomater. 2013, 247045 (2013).

J. Phys. D Appl. Phys. (3)

M. Hamidi, F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D Appl. Phys. 44(24), 245101 (2011).
[Crossref]

M. A. Garcia, “Surface plasmons in metallic nanoparticles: fundementals and applications,” J. Phys. D Appl. Phys. 44(28), 283001 (2011).
[Crossref]

M. B. Ross and G. C. Schatz, “Radiative effects in plasmonic aluminum and silver nanospheres and nanorods,” J. Phys. D Appl. Phys. 48(18), 184004 (2015).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(e66), 1–7 (2013).
[Crossref]

MRS Bull. (1)

A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bull. 30(5), 368–375 (2005).

Nano Lett. (1)

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[Crossref]

Opt. Express (4)

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Phys. Rev. B (2)

V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Plasmonics (1)

K. Q. Le and P. Bienstman, “Optical modeling of plasmonic nanoparticles enhanced light emission of silicon light-emitting diodes,” Plasmonics 6(1), 53–57 (2011).
[Crossref]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, “Controlling light localization and light-matter interactions with nanoplasmonics,” Small 6(22), 2498–2507 (2010).
[Crossref] [PubMed]

Other (3)

U. Kreibig and M. Volner, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

E. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

P. Echlin, Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis, (Springer, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Extinction spectra of a silver isolated nanosphroid with 70 nm length and 40 nm width embedded in air and in an organic material. (b) Extinction spectra of an isolated nanosphroid with 70 nm length and 40 nm width embedded in an organic material deposited on an ITO substrate for Al, Ag and Au.
Fig. 2
Fig. 2 (a) Extinction spectra of a silver isolated prolate nanosphroid and (b) oblate nanospheroid with 40 nm width for different aspect ratios in an organic material deposited on ITO substrate.
Fig. 3
Fig. 3 Schematic structure of the OLED incorporating silver NPs.
Fig. 4
Fig. 4 (a) Current density-voltage curves and (b) luminance-voltage curves for the OLEDs without and with different thicknesses (x) of Ag layer.
Fig. 5
Fig. 5 Luminous Efficiency versus current density for the OLEDs without and with different thicknesses (x) of Ag layer.
Fig. 6
Fig. 6 Absorption spectrum of 1 nm thick Ag layer deposited in the OLED heterostructure (black line). For comparison DCM absorption (blue line), Alq3 (green line) and Alq3:DCM (red line) photoluminescence are also displayed.
Fig. 7
Fig. 7 (a) SEM image of 1 nm thick Ag layer deposited on a Si substrate. (b) Size and (c) eccentricity distribution of the Ag-NPs.
Fig. 8
Fig. 8 (a) Current density-voltage curves and (b) luminance-voltage curves for the OLEDs with different distances d between the Ag-NPs and the emissive layer.
Fig. 9
Fig. 9 Schematic structure of the OLED in a DBR/Al-cathode microcavity.
Fig. 10
Fig. 10 Electroluminescence spectra of the microcavity OLED with and without Ag-NPs, emission spectrum of Alq3:DCM and transmittance spectrum of DBR mirror.

Metrics