Abstract

Defects can dramatically degrade glass quality, and automatic inspection is a trend of quality control in modern industry. One challenge in inspection in an uncontrolled environment is the misjudgment of fake defects (such as dust particles) as surface defects. Fortunately, optical changes within the periphery of a surface defect are usually introduced while those of a fake defect are not. The existence of changes within the defect peripheries can be adopted as a criterion for defect identification. However, modifications within defect peripheries can be too small to be noticeable in intensity based optical image of the glass surface, and misjudgments of modifications may occur due to the incorrectness in defect demarcation. Thus, a sensitive and reliable method for surface defect identification is demanded. To this end, a nondestructive method based on optical coherence tomography (OCT) is proposed to precisely demarcate surface defects and sensitively measure surface deformations. Suspected surface defects are demarcated using the algorithm based on complex difference from expectation. Modifications within peripheries of suspected surface defects are mapped by phase information from complex interface signal. In this way, surface defects are discriminated from fake defects using a parallel spectral domain OCT (SD-OCT) system. Both simulations and experiments are conducted, and these preliminary results demonstrate the advantage of the proposed method to identify glass surface defects.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Defect detection and property evaluation of indium tin oxide conducting glass using optical coherence tomography

Meng-Tsan Tsai, Feng-Yu Chang, Ya-Ju Lee, Jiann-Der Lee, Hsiang-Chen Wang, and Cheng-Kuang Lee
Opt. Express 19(8) 7559-7566 (2011)

Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

Yan Zhang, Jungtae Rha, Ravi S. Jonnal, and Donald T. Miller
Opt. Express 13(12) 4792-4811 (2005)

High speed full range complex spectral domain optical coherence tomography

Erich Götzinger, Michael Pircher, Rainer A. Leitgeb, and Christoph K. Hitzenberger
Opt. Express 13(2) 583-594 (2005)

References

  • View by:
  • |
  • |
  • |

  1. X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
    [Crossref]
  2. S. Lee and G. Vachtsevanos, “An application of rough set theory to defect detection of automotive glass,” Math. Comput. Simul. 60(3-5), 225–231 (2002).
    [Crossref]
  3. J. Räsänen and K.-E. Peiponen, “On-line measurement of the thickness and optical quality of float glass with a sensor based on a diffractive element,” Appl. Opt. 40(28), 5034–5039 (2001).
    [Crossref] [PubMed]
  4. J. D. Holmes, “Inspection of float glass using a novel retroreflective laser scanning system,” in Optical Science, Engineering and Instrumentation'97 (ISOP, 1997), 180–190.
  5. H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
    [Crossref]
  6. S. Rasouli and M. T. Tavassoly, “Moire deflectometer for measuring distortion in sheet glasses,” in ICO20: Optical Devices and Instruments, (ISOP, 2006), paper 60240E.
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  8. A. Nemeth, E. Leiss-Holzinger, G. Hannesschläger, K. Wiesauer, and M. Leitner, Optical Coherence Tomography-Applications in Non-Destructive Testing and Evaluation (INTECH Open Access Publisher, 2013).
  9. Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
    [Crossref]
  10. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  11. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
    [Crossref] [PubMed]
  12. Z. Yaqoob, W. Choi, S. Oh, N. Lue, Y. Park, C. Fang-Yen, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing,” Opt. Express 17(13), 10681–10687 (2009).
    [Crossref] [PubMed]
  13. J. Izatt and M. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography (Springer, 2008), pp. 47–72.
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  15. K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
    [Crossref]

2015 (1)

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

2011 (1)

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

2005 (1)

2003 (1)

2002 (1)

S. Lee and G. Vachtsevanos, “An application of rough set theory to defect detection of automotive glass,” Math. Comput. Simul. 60(3-5), 225–231 (2002).
[Crossref]

2001 (1)

1998 (1)

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Badizadegan, K.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

Chen, Y.-P.

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

Chen, Z.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Choi, W.

Choma, M. A.

Creazzo, T. L.

Dasari, R. R.

de Boer, J. F.

Ding, Z.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Ellerbee, A. K.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fang-Yen, C.

Feld, M. S.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grajciar, B.

Greengrass, J.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Izatt, J. A.

Johnson, C.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Johnson, J.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Lee, S.

S. Lee and G. Vachtsevanos, “An application of rough set theory to defect detection of automotive glass,” Math. Comput. Simul. 60(3-5), 225–231 (2002).
[Crossref]

Lehareinger, Y.

Leitgeb, R. A.

Li, P.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, H.-G.

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

Lue, N.

Nikolov, O.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Oh, S.

Park, B. H.

Park, Y.

Peiponen, K.-E.

Peng, X.

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

Peng, X.-Q.

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

Pierce, M. C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Räsänen, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shen, Y.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sun, G.

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G. J.

Thomas, M.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Vachtsevanos, G.

S. Lee and G. Vachtsevanos, “An application of rough set theory to defect detection of automotive glass,” Math. Comput. Simul. 60(3-5), 225–231 (2002).
[Crossref]

Wang, X.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Williams, K.

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Xie, J.-M.

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

Yang, C.

Yaqoob, Z.

Yu, W.

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

Zhao, C.

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Zhou, Z.

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

Appl. Opt. (1)

Int. J. Adv. Manuf. Technol. (2)

X. Peng, Y. Chen, W. Yu, Z. Zhou, and G. Sun, “An online defects inspection method for float glass fabrication based on machine vision,” Int. J. Adv. Manuf. Technol. 39(11-12), 1180–1189 (2008).
[Crossref]

H.-G. Liu, Y.-P. Chen, X.-Q. Peng, and J.-M. Xie, “A classification method of glass defect based on multiresolution and information fusion,” Int. J. Adv. Manuf. Technol. 56(9-12), 1079–1090 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

K. Williams, C. Johnson, O. Nikolov, M. Thomas, J. Johnson, and J. Greengrass, “Characterization of tin at the surface of float glass,” J. Non-Cryst. Solids 242(2-3), 183–188 (1998).
[Crossref]

Math. Comput. Simul. (1)

S. Lee and G. Vachtsevanos, “An application of rough set theory to defect detection of automotive glass,” Math. Comput. Simul. 60(3-5), 225–231 (2002).
[Crossref]

Opt. Commun. (1)

Z. Chen, C. Zhao, Y. Shen, P. Li, X. Wang, and Z. Ding, “Ultrawide-field parallel spectral domain optical coherence tomography for nondestructive inspection of glass,” Opt. Commun. 341, 122–130 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (4)

A. Nemeth, E. Leiss-Holzinger, G. Hannesschläger, K. Wiesauer, and M. Leitner, Optical Coherence Tomography-Applications in Non-Destructive Testing and Evaluation (INTECH Open Access Publisher, 2013).

S. Rasouli and M. T. Tavassoly, “Moire deflectometer for measuring distortion in sheet glasses,” in ICO20: Optical Devices and Instruments, (ISOP, 2006), paper 60240E.

J. D. Holmes, “Inspection of float glass using a novel retroreflective laser scanning system,” in Optical Science, Engineering and Instrumentation'97 (ISOP, 1997), 180–190.

J. Izatt and M. Choma, “Theory of optical coherence tomography,” in Optical Coherence Tomography (Springer, 2008), pp. 47–72.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The influence of the suspected surface defect on the glass surface. (a) A fake surface defect is attached onto the glass surface and no modifications are made, while (b) a real surface defect is embedded into the glass and generates surface deformations in its peripheral area.
Fig. 2
Fig. 2 Schematic of the established parallel SD-OCT system. SLD, superluminescent diode; Ls, lenses (focus lengths of achromatic lenses L1, L2, L4, and L5 are 100, 100, 250 and 250 mm, respectively. L3 is a compound-lens composed of two lens with focus lengths of 50 and −150 mm, respectively); Cl1 and Cl2, cylindrical lens with focus lengths of 75mm; NPBS, non-polarizing beam splitter 50:50.
Fig. 3
Fig. 3 Illustration of two kinds of sample-air interfaces corresponding to a non-defective area and the boundary of a suspected defect, respectively.
Fig. 4
Fig. 4 Axial profiles for SR and CR interfaces under the condition of | r S n 0 | = 5 | r S n 1 | , A r g ( r S n 0 ) = 0 , A r g ( r S n 1 ) = 0.5 and n 0 n 1 = 1 . (a) The amplitudes and (b) the phases of both kinds of axial profiles.
Fig. 5
Fig. 5 Distribution histograms of (a) Δ M and (b) Δ C obtained from numerical simulation by 10000 times (5000 SR interfaces and 5000 CR interfaces with random depth differences, η = 15 ) and corresponding theoretical distributions. (c) Simulated and theoretical probabilities of detecting CR interfaces as a function of η based on two algorithms. All results are obtained under the assumption of | R | = 500 | S | .
Fig. 6
Fig. 6 En-face OCT images (a) before and (b) after dust cleaning.
Fig. 7
Fig. 7 (a1) Binary coded image of defect regions on glass surface. (a2) Surface topography of the glass. (b1) Overlapped image from combination of (a1) and (a2). Zoom-in view of (b2) the embedded defect and (b3) dust particles indicated by corresponding red rectangles from (b1). Optical microscopic images of the embedded defect with (c) low-magnification, (d) high-magnification, and (e) phase-contrast mode.
Fig. 8
Fig. 8 Overlapped images for (a) 67 dust particles with sizes ranging from 25 μm to 800 μm and (b) 67 embedded defects with sizes ranging from 25 μm to 1200 μm.
Fig. 9
Fig. 9 Defect demarcation based on three algorithms. Determined boundaries of suspected defects on glass using the algorithm based on (a) complex difference, (b) intensity difference, and (c) normalized gray level from enface OCT image. Marked demarcations obtained from (a) are also depicted in (c) with black color. Zoom-in views shown in (a1), (b1), and (c1) correspond to one dust particle and those shown in (a2), (b2), and (c2) correspond to the embedded defect.
Fig. 10
Fig. 10 Overlapped images obtained by different algorithms for defect demarcation. Row (a1)–(e1) corresponds to the embedded defect, and row (a2)–(e2) corresponds to the dust particle. First column (a1) and (a2) are obtained by the algorithm based on complex difference, which are identical to Figs. 7(a1) and 7(a2), respectively. Other columns from (b1) and (b2) to (e1) and (e2) are obtained by the algorithm based on normalized gray level corresponding to different thresholds, where marked demarcations from the algorithm based on complex difference are also depicted in green lines for comparison.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) S ( k ) | 1 + n = 1 N r S n e j 2 k ( z n + δ z n ) | 2 + g .
i ( z ) = n = 1 N r S n Γ [ z 2 ( z n + δ z n ) ] e j 2 k 0 δ z n + α = n = 1 N r S n Γ [ z 2 ( z n + δ z n ) ] + α , z = 2 z 1 , 2 z 2 , ... , 2 z N .
i S R ( z ) = r S n 0 Γ [ z 2 ( z n 0 + δ z n 0 ) ] + α ,
i C R ( z ) = r S n 0 Γ [ z 2 ( z n 0 + δ z n 0 ) ] + r S n 1 Γ [ z 2 ( z n 1 + δ z n 1 ) ] + α .
i S R ( 2 z n 1 ) = r S n 0 Γ [ 2 ( z n 1 z n 0 ) 2 δ z n 0 ] + α ,
i C R ( 2 z n 1 ) = r S n 0 Γ [ 2 ( z n 1 z n 0 ) 2 δ z n 0 ] , + r S n 1 Γ ( 2 δ z n 1 ) + α .
Δ M = | i ( 2 z n 1 ) | | R | .
Δ M S R = | i S R ( 2 z n 1 ) | | R | = | R + α | | R | | α | cos [ Arg ( R ) Arg ( α ) ] = | α | cos ( ϕ r a n d ) ,
Δ M C R = | i C R ( 2 z n 1 ) | | R | = | R + S + α | | R | | S | cos [ Arg ( S ) Arg ( R ) ] = | S | cos ( ϕ r a n d ) .
f Δ M C R ( x ) = 1 | S | π 1 ( x / | S | ) 2 , x [ | S | , | S | ) .
P ( | Δ M C R | 2.12 ) = 2 2.12 σ g | S | 1 | S | π 1 ( x / | S | ) 2 d x = 1 2 π a r c sin ( 2.12 η ) .
Δ C = | i ( 2 z n 1 ) R | .
Δ C S R = | i S R ( 2 z n 1 ) R | = | R + α R | = | α | ,
Δ C C R = | i C R ( 2 z n 1 ) R | = | R + S + α R | = | S + α | | S | + | α | cos [ Arg ( S ) Arg ( α ) ] = | S | + | α | cos ( ϕ r a n d ) .
P ( Δ C C R 2.43 ) = 2.43 σ g 1 π e ( x | S | ) 2 d x = 1 2 [1+erf ( η ) ] ,
Δ C ( y ) = n | i ( 2 z n , y ) R ( z n , y ) | .

Metrics