Abstract

There are few methods capable of characterizing pulse-to-pulse noise in high repetition rate ultrafast lasers. Here we use a recently developed method, termed fidelity, to determine the spectral amplitude and phase noise that leads to lack of pulse repeatability and degrades the performance of laser sources. We present results for a titanium sapphire oscillator and a regenerative amplifier system under different noise conditions. Our experimental results are backed by numerical calculations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantifying noise in ultrafast laser sources and its effect on nonlinear applications

Vadim V. Lozovoy, Gennady Rasskazov, Dmitry Pestov, and Marcos Dantus
Opt. Express 23(9) 12037-12044 (2015)

Intensity noise of an injection-locked Ti:sapphire laser: analysis of the phase-noise-to-amplitude-noise conversion

Jacopo Belfi, Iacopo Galli, Giovanni Giusfredi, and Francesco Marin
J. Opt. Soc. Am. B 23(7) 1276-1286 (2006)

Phase-locked, low-noise, frequency agile titanium:sapphire lasers for simultaneous atom interferometers

Holger Müller, Sheng-wey Chiow, Quan Long, and Steven Chu
Opt. Lett. 31(2) 202-204 (2006)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Lozovoy, G. Rasskazov, D. Pestov, and M. Dantus, “Quantifying noise in ultrafast laser sources and its effect on nonlinear applications,” Opt. Express 23(9), 12037–12044 (2015).
    [Crossref] [PubMed]
  2. H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase‐locked lasers using nonlinear optics,” J. Appl. Phys. 38(5), 2231 (1967).
    [Crossref]
  3. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
    [Crossref] [PubMed]
  4. Y. Li, L. F. Lester, D. Chang, C. Langrock, M. M. Fejer, and D. J. Kane, “Characteristics and instabilities of mode-locked quantum-dot diode lasers,” Opt. Express 21(7), 8007–8017 (2013).
    [Crossref] [PubMed]
  5. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
    [Crossref]
  6. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [Crossref]
  7. W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
    [Crossref]
  8. V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24(7), 1441 (2007).
    [Crossref]
  9. B. Lacaze and M. Chabert, “Theoretical spectrum of noisy optical pulse trains,” Appl. Opt. 47(18), 3231–3240 (2008).
    [Crossref] [PubMed]
  10. R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
    [Crossref]
  11. B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76(4), 043843 (2007).
    [Crossref]
  12. D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
    [Crossref]
  13. C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE LTS 2(2), 44–50 (1991).
    [Crossref]
  14. M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
    [Crossref]
  15. M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).
  16. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17(5), 3331–3340 (2009).
    [Crossref] [PubMed]
  17. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
    [Crossref] [PubMed]
  18. V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, D. Chang, C. Langrock, M. M. Fejer, and M. Ibsen, “104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging,” Opt. Express 21(1), 196–203 (2013).
    [Crossref] [PubMed]
  19. Y. Coello, V. V. Lozovoy, T. C. Gunaratne, B. Xu, I. Borukhovich, C. Tseng, T. Weinacht, and M. Dantus, “Interference without an interferometer: a different approach to measuring, compressing, and shaping ultrashort laser pulses,” J. Opt. Soc. Am. B 25(6), A140–A150 (2008).
    [Crossref]
  20. V. V. Lozovoy, B. Xu, Y. Coello, and M. Dantus, “Direct measurement of spectral phase for ultrashort laser pulses,” Opt. Express 16(2), 592–597 (2008).
    [Crossref] [PubMed]

2015 (1)

2013 (5)

2012 (1)

2009 (1)

2008 (4)

2007 (2)

B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76(4), 043843 (2007).
[Crossref]

V. Torres-Company, H. Lajunen, and A. T. Friberg, “Coherence theory of noise in ultrashort-pulse trains,” J. Opt. Soc. Am. B 24(7), 1441 (2007).
[Crossref]

2006 (1)

W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
[Crossref]

1998 (1)

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
[Crossref]

1991 (1)

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE LTS 2(2), 44–50 (1991).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

1967 (1)

H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase‐locked lasers using nonlinear optics,” J. Appl. Phys. 38(5), 2231 (1967).
[Crossref]

1966 (1)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Aguergaray, C.

Bartels, R.

Bartels, R. A.

R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
[Crossref]

Bennett, C. V.

Borukhovich, I.

Braje, D.

Broderick, N. G. R.

Carney, P. S.

R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
[Crossref]

Chabert, M.

Chang, D.

Coello, Y.

Copner, N. J.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
[Crossref]

Cox, M. C.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
[Crossref]

Dantus, M.

Davis, B. J.

R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
[Crossref]

B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76(4), 043843 (2007).
[Crossref]

Diddams, S. A.

Drobshoff, A. D.

Erkintalo, M.

Fejer, M. M.

Fortier, T.

Friberg, A. T.

Gardner, W. A.

W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
[Crossref]

Golling, M.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Gunaratne, T. C.

Hernandez, V. J.

Hollberg, L.

Ibsen, M.

Kane, D. J.

Keller, U.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Kirchner, M.

Klenner, A.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Lacaze, B.

Lajunen, H.

Langrock, C.

Lester, L. F.

Li, Y.

Link, S. M.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Lozovoy, V. V.

Mangold, M.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

McCumber, D. E.

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Miller, C. M.

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE LTS 2(2), 44–50 (1991).
[Crossref]

Moran, B. D.

Napolitano, A.

W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
[Crossref]

Paura, L.

W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
[Crossref]

Pestov, D.

Rasskazov, G.

Ratner, J.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Rhodes, M.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

Runge, A. F. J.

Schoonover, R. W.

R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
[Crossref]

Steinmeyer, G.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Tilma, B. W.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Torres-Company, V.

Trebino, R.

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37(14), 2874–2876 (2012).
[Crossref] [PubMed]

Tseng, C.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

Weber, H. P.

H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase‐locked lasers using nonlinear optics,” J. Appl. Phys. 38(5), 2231 (1967).
[Crossref]

Weinacht, T.

Weiner, A. M.

Williams, B.

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
[Crossref]

Wong, T. C.

Xu, B.

Zaugg, C. A.

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

Appl. Opt. (1)

Appl. Phys. B (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[Crossref]

IEEE LTS (1)

C. M. Miller, “Intensity modulation and noise characterization of high-speed semiconductor lasers,” IEEE LTS 2(2), 44–50 (1991).
[Crossref]

IEEE Photonics J. (1)

M. Mangold, S. M. Link, A. Klenner, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Amplitude noise and timing jitter characterization of a high-power mode-locked integrated external-cavity surface emitting laser,” IEEE Photonics J. 6, 1500309 (2013).

J. Appl. Phys. (1)

H. P. Weber, “Method for pulsewidth measurement of ultrashort light pulses generated by phase‐locked lasers using nonlinear optics,” J. Appl. Phys. 38(5), 2231 (1967).
[Crossref]

J. Mod. Opt. (1)

R. W. Schoonover, B. J. Davis, R. A. Bartels, and P. S. Carney, “Optical interferometry with pulsed fields,” J. Mod. Opt. 55(10), 1541–1556 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photonics Rev. 7(4), 557–565 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. (1)

D. E. McCumber, “Intensity fluctuations in the output of cw laser oscillators. I,” Phys. Rev. 141(1), 306–322 (1966).
[Crossref]

Phys. Rev. A (1)

B. J. Davis, “Observable coherence theory for statistically periodic fields,” Phys. Rev. A 76(4), 043843 (2007).
[Crossref]

Sci. Meas. Tech. (1)

M. C. Cox, N. J. Copner, and B. Williams, “High sensitivity precision relative intensity noise calibration standard using low noise reference laser source,” Sci. Meas. Tech. 145(4), 163–165 (1998).
[Crossref]

Signal Process. (1)

W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86(4), 639–697 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Calculated fidelity measurements for two cases <F> = 0.5, (a)-(c), and <F> = 0.9, (d)-(f). The parameters for the simulations: (a) random spectral chirp fluctuations within (−2500 to + 2500) fs2, (b) random spectral amplitude bandwidth fluctuations within (12 to 24) nm, (c) fluctuations of spectral phase and amplitude bandwidth within (−1450 to + 1450) fs2 and (16 to 24) nm respectively; (d) random spectral chirp fluctuations within (−510 to + 510) fs2, (e) random spectral amplitude bandwidth fluctuations at FWHM within (21 to 24) nm, (f) fluctuations of phase and amplitude within (−400 to + 400) fs2 and (22 to 24) nm respectively.
Fig. 2
Fig. 2 Non-collinear SHG autocorrelations for amplifier (a) without any distortions, (b) with airflow averaged 100 times, (c) with post-pulse. Note that autocorrelation is not sensitive to changes in pulse duration caused by spectral amplitude or phase noise.
Fig. 3
Fig. 3 Fidelity measurements for a Ti:sapphire oscillator (28 fs) when the pulses are fully compressed. The insets show the experimental and theoretical 2D SHG chirp scans. The fidelity asymptotic values, green dots, are 0.98 and 0.99.
Fig. 4
Fig. 4 Fidelity measurements for compressed laser pulses after the regenerative amplifier (a) in the absence of distortions. Both positive and negative fidelity parameters equal to 0.95. (b) When the pulses are distorted by airflow in the stretcher and compressor. The fidelity parameters equal to 0.88 and 0.89 respectively. The pair of insets shows the experimental and theoretical 2D SHG chirp MIIPS scans respectively.
Fig. 5
Fig. 5 Fidelity measurements of a Ti:sapphire amplifier with a post-pulse. The pair of insets in (a) shows experimental and theoretical 2D SHG chirp MIIPS scans. The fidelity parameters equal to 0.63 and 0.90 respectively (at the green dots). (b) Pre- and post-pulse detection using fidelity measurements and using a fast photodiode. The inset shows the oscilloscope waveform with post-pulse ~10ns after the main pulse.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F ( ϕ ) = I ϕ S H G / I ϕ = 0 S H G I ϕ S H G / I ϕ = 0 S H G = I T h e o r y S H G ( ϕ ) I E x p e r i m e n t S H G ( ϕ ) ,
I T h e o r y S H G ( ϕ ) | E 2 ( t ) | 2 d t .

Metrics