Abstract

We report on the design of Silicon Mach-Zehnder carrier depletion modulators relying on epitaxially grown vertical junction diodes. Unprecedented spatial control over doping profiles resulting from combining local ion implantation with epitaxial overgrowth enables highly linear phase shifters with high modulation efficiency and comparatively low insertion losses. A high average phase shifter efficiency of VπL = 0.74 V⋅cm is reached between 0 V and 2 V reverse bias, while maintaining optical losses at 4.2 dB/mm and the intrinsic RC cutoff frequency at 48 GHz (both at 1 V reverse bias). The fabrication process, the sensitivity to fabrication tolerances, the phase shifter performance and examples of lumped element and travelling wave modulators are modeled in detail. Device linearity is shown to be sufficient to support complex modulation formats such as 16-QAM.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of germanium-doped silicon vertical PN junction optical phase shifter

Darpan Mishra and Ramesh Kumar Sonkar
J. Opt. Soc. Am. B 36(5) 1348-1354 (2019)

Optimization of efficiency-loss figure of merit in carrier-depletion silicon Mach-Zehnder optical modulator

Ilya Goykhman, Boris Desiatov, Shalva Ben-Ezra, Joseph Shappir, and Uriel Levy
Opt. Express 21(17) 19518-19529 (2013)

High-speed compact silicon photonic Michelson interferometric modulator

David Patel, Venkat Veerasubramanian, Samir Ghosh, Alireza Samani, Qiuhang Zhong, and David V. Plant
Opt. Express 22(22) 26788-26802 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. De Dobbelaere, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, T. Pinguet, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and G. Capellini, “Demonstration of first WDM CMOS photonics transceiver with monolithically integrated photo-detectors,” in proceedings of the European Conference on Optical Communications (ECOC, 2008), Vol. 2, pp. 91–92, paper Tu.3.C.1.
    [Crossref]
  2. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
    [Crossref]
  3. D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
    [Crossref]
  4. J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
    [Crossref]
  5. X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
    [Crossref] [PubMed]
  6. B. Milivojevic, J. Whiteaway, S. Wiese, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. P. Anderson, B. Dama, K. Shastri, and C. Muzio, “Design challenges of next generation coherent systems using Silicon photonics high-speed modulator,” 11th IEEE International Conf. on Group IV Photonics (GFP, 2014), pp. 11–12.
    [Crossref]
  7. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).
  8. S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
    [Crossref]
  9. S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).
  10. F. G. Della Corte and S. Rao, “Use of amorphous Silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
    [Crossref]
  11. J. Shin, B. Kuh, J. Lim, B. Kim, E. Lee, D. Shin, K. Cho, B. Lee, K. Ha, H. Choi, G.-H. Choi, H. Kang, and E. Jung, “Epitaxial growth technology for optical interconnect based on bulk-Si platform,” in proceedings of the 11th IEEE International Conference on Group IV Photonics (GFP, 2014), pp. 3–4.
  12. M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based Silicon modulator and CMOS drivers for optical transmitters,” in proceedings of the 11th IEEE International Conference on Group IV Photonics (GFP, 2014), pp. 1–2.
    [Crossref]
  13. H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
    [Crossref] [PubMed]
  14. H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).
  15. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
    [Crossref] [PubMed]
  16. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
    [Crossref] [PubMed]
  17. F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
    [Crossref] [PubMed]
  18. X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
    [Crossref]
  19. R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-Speed Silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
    [Crossref]
  20. J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, and F. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion Silicon optical modulator,” J. Lightwave Technol. 31(24), 4119–4125 (2013).
    [Crossref]
  21. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
    [Crossref] [PubMed]
  22. X. Tu, K. F. Chang, T. Y. Liow, J. Song, X. Luo, L. Jia, Q. Fang, M. Yu, G. Q. Lo, P. Dong, and Y. K. Chen, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Express 22(19), 23724–23731 (2014).
    [Crossref] [PubMed]
  23. Private communication, Data provided by Mark Webster from Cisco Systems Inc.
  24. A. Narasimha, B. Analui, E. Balmater, A. Clark, T. Gal, D. Guckenberger, S. Gutierrez, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, A. Mekis, S. Mirsaidi, M. Peterson, T. Pham, T. Pinguet, V. Sadagopan, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, S. Abdalla, S. Gloeckner, and P. De Dobbelaere, “A 40-Gb/s QSFP optoelectronic transceiver in a 0.13μm CMOS Silicon-on-insulator technology,” in proceedings of the Optical Fiber Conference (OFC, 2008), paper OMK7.
  25. I. García López, P. Rito, D. Micusik, J. Borngräber, L. Zimmermann, A. C. Ulusoy, and D. Kissinger, “A 2.5 Vppd broadband 32 GHz BiCMOS linear driver with tunable delay line for InP segmented Mach-Zehnder modulators,” in proceedings of the International Microwave Symposium (IMS, 2015).
  26. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact Silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
    [Crossref] [PubMed]
  27. J.-M. Liu, Photonic Devices (Cambridge Univ. Press, 2005).
  28. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
    [Crossref] [PubMed]
  29. A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
    [Crossref]

2015 (2)

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

2014 (6)

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

R. Ding, Y. Liu, Y. Ma, Y. Yang, Q. Li, A. E.-J. Lim, G.-Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “High-Speed Silicon modulator with slow-wave electrodes and fully independent differential drive,” J. Lightwave Technol. 32(12), 2240–2247 (2014).
[Crossref]

X. Tu, K. F. Chang, T. Y. Liow, J. Song, X. Luo, L. Jia, Q. Fang, M. Yu, G. Q. Lo, P. Dong, and Y. K. Chen, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Express 22(19), 23724–23731 (2014).
[Crossref] [PubMed]

2013 (6)

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
[Crossref] [PubMed]

J. Wang, C. Qiu, H. Li, W. Ling, L. Li, A. Pang, Z. Sheng, A. Wu, X. Wang, S. Zou, and F. Gan, “Optimization and demonstration of a large-bandwidth carrier-depletion Silicon optical modulator,” J. Lightwave Technol. 31(24), 4119–4125 (2013).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

F. G. Della Corte and S. Rao, “Use of amorphous Silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

2012 (4)

2010 (1)

2009 (1)

2008 (1)

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Absil, P.

Alloatti, L.

Analui, B.

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Arakawa, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Azadeh, S. S.

Baehr-Jones, T.

Baets, R.

Bergman, K.

Bogaerts, W.

Brimont, A.

Buca, D.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

Capellini, G.

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Chagnon, M.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Chang, K. F.

Chen, H.

Chen, S. W.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Chen, Y. K.

Chu, T.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Della Corte, F. G.

F. G. Della Corte and S. Rao, “Use of amorphous Silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

Ding, J.

Ding, R.

Dong, F.

Dong, P.

Dumon, P.

Fang, Q.

Fedeli, J. M.

Fujita, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Gan, F.

Gardes, F. Y.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact Silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[Crossref] [PubMed]

Ghosh, S.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Goll, B.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Gunn, C.

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Hauck, J.

Hillerkuss, D.

Hochberg, M.

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Ji, R.

Jia, L.

Knoll, D.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Komorowska, K.

Korn, D.

Krauss, T. F.

Leuthold, J.

Li, H.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Li, L.

Li, Q.

Li, X.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Li, Y.

Li, Z.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Lim, A. E.-J.

Ling, W.

Liow, T. Y.

Liow, T.-Y.

Lischke, S.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Liu, Y.

Lo, G. Q.

Lo, G.-Q.

Lu, Y.

Luo, X.

Ma, Y.

Marris-Morini, D.

Martí, J.

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Masini, G.

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Merget, F.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
[Crossref] [PubMed]

Miller, D. A. B.

Min, R.

Moscoso-Mártir, A.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

Mueller, J.

Müller, J.

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

Nakamura, T.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Nezhad, M. P.

O’Faolain, L.

Osman, M.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Pang, A.

Pantouvaki, M.

Patel, D.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Plant, D. V.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Porte, H.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Qiu, C.

Rao, S.

F. G. Della Corte and S. Rao, “Use of amorphous Silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

Rasigade, G.

Reed, G. T.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact Silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[Crossref] [PubMed]

Romero-García, S.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

Sahni, S.

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Samani, A.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Sanchis, P.

Sharif Azadeh, S.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

Shen, B.

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
[Crossref] [PubMed]

Sheng, Z.

Song, J.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Tian, Y.

Tu, X.

Urino, Y.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

Van Campenhout, J.

Veerasubramanian, V.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Verheyen, P.

Vivien, L.

von den Driesch, N.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

Wang, J.

Wang, X.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Witzens, J.

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

Wu, A.

Xiao, X.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Xu, H.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Yang, L.

Yang, Y.

Yu, H.

Yu, J.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Yu, M.

Yu, Y.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

Zhang, L.

Zhong, Q.

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

Zhou, P.

Zhu, W.

Zimmermann, H.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Zimmermann, L.

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Zou, S.

IEEE Commun. Mag. (1)

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013).
[Crossref]

IEEE Photonics J. (1)

A. Samani, M. Chagnon, D. Patel, V. Veerasubramanian, S. Ghosh, M. Osman, Q. Zhong, and D. V. Plant, “A low-voltage 35-GHz Silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photonics J. 7(3), 1 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient Silicon Michelson interferometer modulators,” IEEE Photonics Technol. Lett. 25(5), 407–409 (2013).
[Crossref]

IEEE Trans. Electron. Dev. (1)

F. G. Della Corte and S. Rao, “Use of amorphous Silicon for active photonic devices,” IEEE Trans. Electron. Dev. 60(5), 1495–1505 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Sel. Top. Quant. Electron. (1)

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed Silicon depletion-mode Mach-Zehnder modulators,” J. Sel. Top. Quant. Electron. 20(4), 3400110 (2014).

Laser Photonics Rev. (1)

D. J. Thomson, H. Porte, B. Goll, D. Knoll, S. Lischke, F. Y. Gardes, Y. Hu, G. T. Reed, H. Zimmermann, and L. Zimmermann, “Silicon carrier modulator with 10 Gbit/s driver realized in high-performance photonic BiCMOS,” Laser Photonics Rev. 8(1), 180–187 (2014).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based Silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2014).

Opt. Express (9)

X. Tu, T.-Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator,” Opt. Express 20(7), 7081–7087 (2012).
[Crossref] [PubMed]

X. Tu, K. F. Chang, T. Y. Liow, J. Song, X. Luo, L. Jia, Q. Fang, M. Yu, G. Q. Lo, P. Dong, and Y. K. Chen, “Silicon optical modulator with shield coplanar waveguide electrodes,” Opt. Express 22(19), 23724–23731 (2014).
[Crossref] [PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
[Crossref] [PubMed]

D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012).
[Crossref] [PubMed]

F. Merget, S. S. Azadeh, J. Mueller, B. Shen, M. P. Nezhad, J. Hauck, and J. Witzens, “Silicon photonics plasma-modulators with advanced transmission line design,” Opt. Express 21(17), 19593–19607 (2013).
[Crossref] [PubMed]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed Silicon Mach-Zehnder modulator based on interleaved PN junctions,” Opt. Express 20(14), 15093–15099 (2012).
[Crossref] [PubMed]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact Silicon ring resonator based on a reverse-biased pn diode,” Opt. Express 17(24), 21986–21991 (2009).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

Proc. SPIE (3)

J. Witzens, G. Masini, S. Sahni, B. Analui, C. Gunn, and G. Capellini, “10Gbit/s transceiver on Silicon,” Proc. SPIE 6996, 699610 (2008).
[Crossref]

S. Sharif Azadeh, J. Müller, F. Merget, S. Romero-García, B. Shen, and J. Witzens, “Advances in Silicon photonics segmented electrode Mach-Zehnder modulators and peaking enhanced resonant devices,” Proc. SPIE 9288, 928817 (2014).
[Crossref]

S. Sharif Azadeh, S. Romero-García, F. Merget, A. Moscoso-Mártir, N. von den Driesch, D. Buca, and J. Witzens, “Epitaxially grown vertical junction phase shifters for improved modulation efficiency in Silicon depletion-type modulators,” Proc. SPIE 9516, 95160T (2015).

Other (8)

J. Shin, B. Kuh, J. Lim, B. Kim, E. Lee, D. Shin, K. Cho, B. Lee, K. Ha, H. Choi, G.-H. Choi, H. Kang, and E. Jung, “Epitaxial growth technology for optical interconnect based on bulk-Si platform,” in proceedings of the 11th IEEE International Conference on Group IV Photonics (GFP, 2014), pp. 3–4.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based Silicon modulator and CMOS drivers for optical transmitters,” in proceedings of the 11th IEEE International Conference on Group IV Photonics (GFP, 2014), pp. 1–2.
[Crossref]

B. Milivojevic, J. Whiteaway, S. Wiese, C. Raabe, A. Shastri, M. Webster, P. Metz, S. Sunder, B. Chattin, S. P. Anderson, B. Dama, K. Shastri, and C. Muzio, “Design challenges of next generation coherent systems using Silicon photonics high-speed modulator,” 11th IEEE International Conf. on Group IV Photonics (GFP, 2014), pp. 11–12.
[Crossref]

Private communication, Data provided by Mark Webster from Cisco Systems Inc.

A. Narasimha, B. Analui, E. Balmater, A. Clark, T. Gal, D. Guckenberger, S. Gutierrez, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, A. Mekis, S. Mirsaidi, M. Peterson, T. Pham, T. Pinguet, V. Sadagopan, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, S. Abdalla, S. Gloeckner, and P. De Dobbelaere, “A 40-Gb/s QSFP optoelectronic transceiver in a 0.13μm CMOS Silicon-on-insulator technology,” in proceedings of the Optical Fiber Conference (OFC, 2008), paper OMK7.

I. García López, P. Rito, D. Micusik, J. Borngräber, L. Zimmermann, A. C. Ulusoy, and D. Kissinger, “A 2.5 Vppd broadband 32 GHz BiCMOS linear driver with tunable delay line for InP segmented Mach-Zehnder modulators,” in proceedings of the International Microwave Symposium (IMS, 2015).

J.-M. Liu, Photonic Devices (Cambridge Univ. Press, 2005).

P. De Dobbelaere, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, T. Pinguet, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and G. Capellini, “Demonstration of first WDM CMOS photonics transceiver with monolithically integrated photo-detectors,” in proceedings of the European Conference on Optical Communications (ECOC, 2008), Vol. 2, pp. 91–92, paper Tu.3.C.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic cross-sections of different phase shifter configurations. (a) Conventional and (b,c) modified lateral junctions with (b) narrow highly doped regions in the vicinity of the junction and (c) doping compensation at the corners of the ridge waveguide. (d,e) Vertical junctions with narrow highly doped regions in the vicinity of the junction with (d) top contacting with polycrystalline or amorphous Silicon or (e) contacting by means of the highly doped n+ and p+ layers (the proposed phase shifter). (f) Silicon-insulator-Silicon capacitive phase shifter (SISCAP). In all the diagrams n++ and p++ refer to very highly doped wells implemented for contacting.
Fig. 2
Fig. 2 (a) Effective index change (between 0 V and 2 V reverse bias), (b) Lπ/2 derived from (a), (c) linear phase shifter loss, (d) total loss of a phase shifter sized to obtain π/2 phase shift with a 2 Vpp drive, (e) intrinsic phase shifter cutoff frequency fc = 1/2πRLCL and (f) the maximized metric Δneff2fc/(αCL). In all graphs the horizontal axis shows the p-doping and the vertical axis the n-doping. Crosses indicated the doping levels maximizing the FOM, as also described in the text.
Fig. 3
Fig. 3 Fabrication flow of the proposed phase shifter.
Fig. 4
Fig. 4 (a) Realistic dopant distributions inside the phase shifter as simulated by TCAD, (b) free carrier distributions inside the phase shifter resulting from the realistic dopant distribution and (c) optical field profile of the guided mode. In (a) positive concentrations represent n-doping and negative concentrations p-doping.
Fig. 5
Fig. 5 DC characteristics and bandwidth of the ion-implanted phase shifters: (a) Series resistance (green curve) and capacitance (blue curve), (b) RC limited intrinsic cutoff frequency, (c) optical insertion loss, and (d) effective index change versus applied reverse bias.
Fig. 6
Fig. 6 Sensitivity of the modulation efficiency to misalignment of the doping layers. (a) Schematic of the lateral (up) and vertical (down) junction phase shifters. Zero misalignment is defined as zero gap and 250 nm overlay, respectively for lateral and vertical junction phase shifters. (b) Effective index change versus misalignment for a 2 Vpp drive signal and (c) percent change of the effective index change relative to the nominal value versus misalignment. In all curves, equal p- and n-doping concentrations are assumed, as labeled in the legend (in units of cm−3).
Fig. 7
Fig. 7 (a) Layout of the meandered lumped element modulator, (b) lumped element circuit model, (c) E/O frequency response of the device. The inset in (a) shows a detailed view of the waveguide transitions between shallow and deeply etched regions.
Fig. 8
Fig. 8 (a) Layout of the TW device, (b) detailed view of the recovery loops used to obtain phase matching and (c) RF effective index of the transmission line as a function of frequency.
Fig. 9
Fig. 9 (a) Characteristic impedance of the loaded transmission line and (b) RF loss per transmission line unit length as a function of RF modulation frequency.
Fig. 10
Fig. 10 (a) Diagram of an IQ modulator with two pairs of phase shifters each operated in push-pull configuration and a static π phase shift applied to one of the complementary arms, (b) eye diagram of one of the applied 28 GBaud PAM-4 signals, (c) constellation diagrams in the optical domain assuming infinite modulator bandwidth for different phase shifter INLs Δφ and (d) constellation diagram in the optical domain for Δφ = 0.37 rad, a modulator bandwidth of 17 GHz and 28 GBaud signaling. The black dots in (d) show the ideal constellation diagram only taking the cosine transfer function of the MZM into account. The rotations of the individual symbols under the effect of Δφ are indicated by arrows in (c).
Fig. 11
Fig. 11 (a) Phase shift versus the applied reverse voltage and the corresponding INL Δφ for the lateral (ΔφL) and vertical (ΔφV) phase shifters, as given by the deviation at Vπ/2 from the linearized phase shift represented by the dashed lines. The inset shows Δneff versus the applied reverse voltage. (b) Inner OMA as a function of the phase shifter INL Δφ. The inner OMA is given as a fraction of the total (outer) OMA of an undistorted constellation diagram, with 1/3 being the theoretical maximum.
Fig. 12
Fig. 12 Enhancement of the energy per bit and the device bandwidth per energy per bit ratio for a lumped element modulator relative to a TW modulator of equal length as a function of fTW/fc. The upper y-axis shows the corresponding phase shifter lengths assuming the characteristics of the phase shifter reported in section 3 (last row of Table 1). The dashed black curve corresponds to 6fTW/fc and to the asymptotic limit of the model for small fTW/fc.

Tables (2)

Tables Icon

Table 1 Comparison of different phase shifter designs based on loss, phase shift efficiency, speed and energy per bit. The waveguide height (h) and phase shifter length (LPS) are indicated in the second column. Reported VπL are either averaged over an operational voltage range or reported at a fixed average voltage. Except for [23], data is reported for λ = 1550 nm.

Tables Icon

Table 2 Characteristics of the TW and the lumped element modulators using the proposed vertical phase shifters.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S 21 [ d B e ] S 21 , D C [ d B e ] = 20 l o g 10 ( 1 L P S V 0 m a x θ [ 0 , 2 π ] ( 0 L P S | V ( x ) | cos ( φ V 2 π λ R F n g x + θ ) d x ) )
S 21 [ d B e ] S 21 , D C [ d B e ] = 20 l o g 10 ( 1 L P S λ R F π n g sin ( π λ R F n g L P S ) )
S ( 00 , 00 ) = 1 2 ( cos ( π ) + i cos ( π ) ) = 1 2 ( 1 i ) S ( 01 , 00 ) = 1 2 ( e i ( 8 9 Δ φ ) cos ( 2 π 3 ) + i cos ( π ) ) = 1 2 ( 0.5 e i ( 8 9 Δ φ ) i ) S ( 10 , 00 ) = 1 2 ( e i ( 8 9 Δ φ ) cos ( π 3 ) + i cos ( π ) ) = 1 2 ( 0.5 e i ( 8 9 Δ φ ) i ) S ( 11 , 00 ) = 1 2 ( cos ( 0 ) + i cos ( π ) ) = 1 2 ( 1 i ) S ( 11 , 11 ) = 1 2 ( cos ( 0 ) + i cos ( 0 ) ) = 1 2 ( 1 + i )
Δ φ = k 2 V M O D 2 4 = V M O D I I P 2 π 4 k 1 V M O D π V M O D I I P 2 π 4
d V d z = 1 2 ω 2 C L 2 R L Z 0 1 + ( R L C L ω ) 2 V = 1 4 ω c 2 C L 2 R L Z 0 V
L P S = 0.74 4 ω c 2 C L 2 R L Z 0 = 2.96 ω c C L Z 0
P = 1 4 D C L L P S V M O D 2 = 0.74 D V M O D 2 ω c Z 0 = 0.2 V M O D 2 2 Z 0
d V d z = 1 2 ω 2 C L 2 R L Z 0 1 + ( R L C L ω ) 2 V 1 2 ω T W 2 C L 2 R L Z 0 V
L P S = 0.74 2 ω T W 2 C L 2 R L Z 0
P = 1 4 D C L L P S V M O D 2 = 0.28 V M O D 2 2 Z 0 0.6 ω T W R L C L

Metrics