Abstract

This paper reports on the fabrication and characterization of multimaterial chalcogenide fiber tapers that have high numerical apertures (NAs). We first fabricated multimaterial As2Se3-As2S3 chalcogenide fiber preforms via a modified one-step coextrusion process. The preforms were drawn into multi- and single-mode fibers with high NAs (≈1.45), whose core/cladding diameters were 103/207 and 11/246 μm, respectively. The outer diameter of the fiber was tapered from a few hundred microns to approximately two microns through a self-developed automatic tapering process. Simulation results showed that the zero-dispersion wavelengths (ZDWs) of the tapers were shorter than 2 μm, indicating that the tapers can be conveniently pumped by commercial short wavelength infrared lasers. We also experimentally demonstrated the supercontinuum generation (SCG) in a 15-cm-long multimaterial As2Se3-As2S3 chalcogenide taper with 1.9 μm core diameter and the ZDW was shifted to 3.3 μm. When pumping the taper with 100 fs short pulses at 3.4 µm, a 20 dB spectral of the generated supercontinuum spans from 1.5 μm to longer than 4.8 μm.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
    [Crossref] [PubMed]
  2. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
    [Crossref] [PubMed]
  3. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  4. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [Crossref] [PubMed]
  5. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
    [Crossref]
  6. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  7. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref] [PubMed]
  8. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141148 (2011).
  9. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  10. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [Crossref]
  11. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
    [Crossref] [PubMed]
  12. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [Crossref] [PubMed]
  13. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [Crossref] [PubMed]
  14. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [Crossref] [PubMed]
  15. D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
    [Crossref] [PubMed]
  16. F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multi-octave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
    [Crossref] [PubMed]
  17. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  18. W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).
  19. S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).
  20. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  21. S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nanotapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
    [Crossref]
  22. M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
    [Crossref]
  23. H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54(8), 2072–2079 (2015).
    [Crossref] [PubMed]
  24. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [Crossref] [PubMed]
  25. S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
    [Crossref]
  26. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  27. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [Crossref] [PubMed]
  28. A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
    [Crossref] [PubMed]
  29. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
    [Crossref] [PubMed]
  30. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
    [Crossref] [PubMed]
  31. E. T. Y. Lee and E. R. M. Taylor, “Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms,” J. Mater. Process. Technol. 184(1-3), 325–329 (2007).
    [Crossref]
  32. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
    [Crossref]
  33. G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
    [Crossref] [PubMed]
  34. G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
    [Crossref]
  35. P. Sharma and S. Katyal, “Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys,” J. Non-Cryst. Solids 354(32), 3836–3839 (2008).
    [Crossref]
  36. A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
    [Crossref]
  37. J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).
  38. R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).
  39. Y. He, X. Wang, and Q. Nie, “Investigation of high tension chalcogenide glass micro-structure optical fibers,” J. Optoelectronics Laser. 24, 530–534 (2013).

2015 (2)

2014 (6)

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

G. Tao, S. Shabahang, S. Dai, and A. F. Abouraddy, “Multimaterial disc-to-fiber approach to efficiently produce robust infrared fibers,” Opt. Mater. Express 4(10), 2143–2149 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multi-octave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (4)

2012 (4)

2011 (3)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141148 (2011).

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
[Crossref]

2008 (4)

P. Sharma and S. Katyal, “Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys,” J. Non-Cryst. Solids 354(32), 3836–3839 (2008).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref] [PubMed]

2007 (4)

2006 (1)

2004 (3)

2003 (2)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

1996 (1)

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

1989 (1)

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abouraddy, A. F.

Aggarwal, I. D.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Ahmad, H.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
[Crossref]

Al-kadry, A.

Andersen, T.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Baker, C.

Baker, N. J.

Banaei, E. H.

Bang, O.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Baudisch, M.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Biegert, J.

Boudebs, G.

Brilland, L.

Brown, T.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

Busse, L. E.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Byer, R. L.

Caillaud, C.

Carlie, N.

Cherukulappurath, S.

Choi, D.-Y.

Chudoba, C.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Curtiss, L.

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Dai, S.

Daigle, J.-F.

Dekker, S. A.

Delfyett, P. J.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Driver, R.

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Ebnali-Heidari, M.

H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54(8), 2072–2079 (2015).
[Crossref] [PubMed]

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Eggleton, B. J.

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141148 (2011).

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[Crossref] [PubMed]

V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[Crossref] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[Crossref] [PubMed]

El Amraoui, M.

Feder, K. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

Feng, B. L.

A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
[Crossref]

Finsterbusch, K.

Florea, C.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Fu, L.

Fu, L. B.

Fujimoto, J. G.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Gai, X.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Ghanta, R. K.

Gibson, D. J.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hansen, K.

Hartl, I.

Harun, S. W.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

He, Y.

Y. He, X. Wang, and Q. Nie, “Investigation of high tension chalcogenide glass micro-structure optical fibers,” J. Optoelectronics Laser. 24, 530–534 (2013).

Hilligsøe, K. M.

Hodelin, J.

Hudson, D. D.

Humeau, A.

Jackson, S. D.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Judge, A. C.

Katyal, S.

P. Sharma and S. Katyal, “Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys,” J. Non-Cryst. Solids 354(32), 3836–3839 (2008).
[Crossref]

Kaufman, J. J.

Keiding, S.

Khalilzadeh-Rezaie, F.

Kim, W. H.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Ko, T. H.

Koohi-Kamali, F.

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Kristiansen, R.

Kubat, I.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kung, F. H.

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Lamont, M. R. E.

Larsen, J.

Lee, E. T. Y.

E. T. Y. Lee and E. R. M. Taylor, “Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms,” J. Mater. Process. Technol. 184(1-3), 325–329 (2007).
[Crossref]

Légaré, F.

Lenz, G.

Leskowitz, G.

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Li, A. C.

A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
[Crossref]

Li, E.

Li, L.

A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
[Crossref]

Li, X. D.

Li, Y.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

Lim, K. S.

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Marandi, A.

Marquez, M. P.

Mathieu, P.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Méchin, D.

Messaddeq, Y.

Miklo, R. E.

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Møller, U.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mølmer, K.

Moravvej-Farshi, M. K.

H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54(8), 2072–2079 (2015).
[Crossref] [PubMed]

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Moss, D. J.

Moynihan, D.

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Naser-Moghadasi, M.

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Nguyen, D.

Nguyen, H. C.

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Nicholson, J. W.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

Nie, Q.

Y. He, X. Wang, and Q. Nie, “Investigation of high tension chalcogenide glass micro-structure optical fibers,” J. Optoelectronics Laser. 24, 530–534 (2013).

Nielsen, C.

Nquyen, V. Q.

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Paulsen, H.

Peale, R. E.

Petersen, C. R.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petit, L.

Piracha, M. U.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

Pureza, P. C.

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Ren, H.

Richardson, K.

Rochette, M.

Roelens, M. A.

Rudy, C. W.

Saghaei, H.

H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, “Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers,” Appl. Opt. 54(8), 2072–2079 (2015).
[Crossref] [PubMed]

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Sanghera, J.

Sanghera, J. S.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Schmidt, B. E.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Shabahang, S.

Sharma, P.

P. Sharma and S. Katyal, “Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys,” J. Non-Cryst. Solids 354(32), 3836–3839 (2008).
[Crossref]

Shaw, L. B.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Slusher, R. E.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ta’eed, V.

Tang, H. H.

A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
[Crossref]

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, G.

Taylor, E. R. M.

E. T. Y. Lee and E. R. M. Taylor, “Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms,” J. Mater. Process. Technol. 184(1-3), 325–329 (2007).
[Crossref]

Théberge, F.

Thiré, N.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Troles, J.

Vacha, L.

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Vallée, R.

Vodopyanov, K. L.

Wang, X.

Werdehausen, D.

Westbrook, P. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Yang, Z.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Yeom, D. I.

Yu, Y.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Adv. Mat. Res. (1)

A. C. Li, H. H. Tang, B. L. Feng, and L. Li, “Analysis of climbing obstacle capability and its influential factors of omni-directional wheeled robot,” Adv. Mat. Res. 591-593, 717–721 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85(20), 4600 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser-Moghadasi, and M. K. Moravvej-Farshi, “Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers,” IEEE J. Quantum Electron. 20(5), 582–589 (2014).
[Crossref]

Int. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nquyen, P. C. Pureza, R. E. Miklo, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60-x)Sex glass fibers,” J. Lightwave Technol. 14, 743 (1996).

J. Mater. Process. Technol. (1)

E. T. Y. Lee and E. R. M. Taylor, “Two-die assembly for the extrusion of glasses with dissimilar thermal properties for fibre optic preforms,” J. Mater. Process. Technol. 184(1-3), 325–329 (2007).
[Crossref]

J. Non-Cryst. Solids (3)

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

P. Sharma and S. Katyal, “Far-infrared transmission and bonding arrangement in Ge10Se90-xTex semiconducting glassy alloys,” J. Non-Cryst. Solids 354(32), 3836–3839 (2008).
[Crossref]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non-linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Optoelectronics Laser. (1)

Y. He, X. Wang, and Q. Nie, “Investigation of high tension chalcogenide glass micro-structure optical fibers,” J. Optoelectronics Laser. 24, 530–534 (2013).

Laser Phys. (1)

S. W. Harun, K. S. Lim, and H. Ahmad, “Investigation of dispersion characteristic in tapered fiber,” Laser Phys. 21(5), 945–947 (2011).
[Crossref]

MRS Proceedings (1)

R. Driver, G. Leskowitz, L. Curtiss, D. Moynihan, and L. Vacha, “The characterization of infrared transmitting optical fibers,” MRS Proceedings 172, 169 (1989).

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141148 (2011).

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (11)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
[Crossref] [PubMed]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref] [PubMed]

L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga-Sb-S/Se,” Opt. Lett. 31(10), 1495–1497 (2006).
[Crossref] [PubMed]

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

F. Théberge, N. Thiré, J.-F. Daigle, P. Mathieu, B. E. Schmidt, Y. Messaddeq, R. Vallée, and F. Légaré, “Multi-octave infrared supercontinuum generation in large-core As2S3 fibers,” Opt. Lett. 39(22), 6474–6477 (2014).
[Crossref] [PubMed]

A. Al-kadry, C. Baker, M. El Amraoui, Y. Messaddeq, and M. Rochette, “Broadband supercontinuum generation in As2Se3 chalcogenide wires by avoiding the two-photon absorption effects,” Opt. Lett. 38(7), 1185–1187 (2013).
[Crossref] [PubMed]

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett. 38(15), 2865–2868 (2013).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E. H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Other (2)

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, and R. R. Gattass, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids (to be published).

S. A. Ray Hilton, Chalcogenide Glasses for Infrared Optics (McGraw-Hill, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Coextrusion procedure of the isolated stacked extrusion (1-As2Se3 billet; 2-sleeve; 3-As2S3 billet). (b) and (c) Preforms for multi- and single-mode fibers and their cross sections in different positions (1–4 refer to different cut-off points). (d) Schematic of the drawing procedure. (e) and (f) Profile image and cross section of the multi-mode fiber. (g) and (h) Profile image and cross section of the single-mode fiber.

Fig. 2
Fig. 2

Transmission spectra of As2Se3 glass (Sample thickness: 2 mm). The inset shows the transmission spectra of As2Se3 glass from 2.5 μm to 5 μm.

Fig. 3
Fig. 3

Transmitting loss spectra of (a) the multi-mode fiber and (b) the single-mode fiber.

Fig. 4
Fig. 4

Near-field optical images and 3-D intensity profiles at 1550 nm for (a) the multi-mode fiber and (b) the single-mode fiber.

Fig. 5
Fig. 5

Refractive indices and NAs of the core and cladding.

Fig. 6
Fig. 6

(a) Schematic diagram of the tapering experiment. (b) Image of the taper. (c) Micrographs of the tapers with different outer diameters. (d) Dispersion characteristic curves and ZDW of the tapers (I–VI respectively correspond to outer diameters of 60, 30, 15, 6, 3, and 1.5 μm).

Fig. 7
Fig. 7

Calculated dispersion characteristic curves and ZDW of the tapers (I–VI correspond to outer diameters of 60, 30, 15, 6, 3, and 1.5 μm, respectively).

Fig. 8
Fig. 8

Experimental SCG results with pumping at different input powers at 3.4 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 1 2 n 2 2

Metrics