Abstract

Our aim is to establish a novel combined acousto-optical method for in vivo imaging of the human retina with the two-photon microscope. In this paper we present modeling results based on eye model samples constructed with parameters measured on patients. We used effectively the potential of the electronic compensation offered by the acousto-optic lenses to avoid the use of adaptive optical correction. Simulation predicted lateral resolution between 1.6 µm and 3 µm on the retina. This technology allows the visualization of single cells and promises real time measuring of neural activity in individual neurons, neural segments and cell assemblies with 30-100 µs temporal and subcellular spatial resolution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo two-photon imaging of the mouse retina

Robin Sharma, Lu Yin, Ying Geng, William H. Merigan, Grazyna Palczewska, Krzysztof Palczewski, David R. Williams, and Jennifer J. Hunter
Biomed. Opt. Express 4(8) 1285-1293 (2013)

Periscope for noninvasive two-photon imaging of murine retina in vivo

Patrycjusz Stremplewski, Katarzyna Komar, Krzysztof Palczewski, Maciej Wojtkowski, and Grazyna Palczewska
Biomed. Opt. Express 6(9) 3352-3361 (2015)

Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

Yan Zhang, Jungtae Rha, Ravi S. Jonnal, and Donald T. Miller
Opt. Express 13(12) 4792-4811 (2005)

References

  • View by:
  • |
  • |
  • |

  1. E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
    [Crossref] [PubMed]
  2. K. Durrani and C. S. Foster, “Fundus autofluorescence imaging in posterior uveitis,” Semin. Ophthalmol. 27(5-6), 228–235 (2012).
    [Crossref] [PubMed]
  3. Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
    [Crossref] [PubMed]
  4. T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
    [Crossref] [PubMed]
  5. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [Crossref] [PubMed]
  6. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
    [Crossref] [PubMed]
  7. Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
    [Crossref] [PubMed]
  8. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [Crossref] [PubMed]
  9. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express 2(1), 139–148 (2011).
    [Crossref] [PubMed]
  10. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [Crossref] [PubMed]
  11. M. D. Tocci, “How to Model the Human Eye in ZEMAX,” Opt. Design Eng.23, (2007).
  12. D. A. Atchinson and G. Smith, Optics of the Human Eye (Butterworth Heinemann, 2002)
  13. J. Schwiegerling, Visual and Ophthalmic Optics (Spie, 2004).
  14. A. Kaplan, N. Friedman, and N. Davidson, “Acousto-optic lens with very fast focus scanning,” Opt. Lett. 26(14), 1078–1080 (2001).
    [Crossref] [PubMed]
  15. P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
    [PubMed]
  16. A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
    [Crossref] [PubMed]
  17. F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
    [PubMed]
  18. A. Samy, S. Lightman, F. Ismetova, L. Talat, and O. Tomkins-Netzer, “Role of autofluorescence in inflammatory/infective diseases of the retina and choroid” J. Ophthalmol. 2014 (418193 2014).
  19. F. G. Holz, A. Bird, R. F. Spaide, and S. Schmitz-Valckenberg, Atlas of Fundus Autofluorescence Imaging (Springer, 2007).
  20. E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
    [Crossref] [PubMed]
  21. A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
    [Crossref] [PubMed]
  22. S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
    [Crossref] [PubMed]
  23. A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
    [Crossref] [PubMed]
  24. J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
    [Crossref] [PubMed]
  25. A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
    [Crossref] [PubMed]
  26. Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
    [Crossref] [PubMed]
  27. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  28. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
    [Crossref] [PubMed]
  29. R. J. Zawadzki, S. S. Choi, A. R. Fuller, J. W. Evans, B. Hamann, and J. S. Werner, “Cellular resolution volumetric in vivo retinal imaging with adaptive optics-optical coherence tomography,” Opt. Express 17(5), 4084–4094 (2009).
    [Crossref] [PubMed]
  30. Á. Kusnyerik, B. Rózsa, J. Németh, and P. Maák, “Application of optical modeling to adapt acousto optic two-photon microscope for the clinical analysis of the human eye” (personal communication, 2013).

2013 (4)

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
[Crossref] [PubMed]

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

2012 (5)

K. Durrani and C. S. Foster, “Fundus autofluorescence imaging in posterior uveitis,” Semin. Ophthalmol. 27(5-6), 228–235 (2012).
[Crossref] [PubMed]

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

2007 (1)

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

2003 (1)

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

1998 (1)

P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
[PubMed]

1997 (1)

1995 (1)

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

1993 (1)

E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
[Crossref] [PubMed]

Ahamd, K.

Almeida, A.

A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
[Crossref] [PubMed]

Arend, O.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Artal, P.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Bailey, C.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Bindewald, A.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Bird, A. C.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Bok, D.

E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
[Crossref] [PubMed]

Bosch, E.

E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
[Crossref] [PubMed]

Brennan, N. A.

Brinkmann, R.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Bueno, J. M.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Bullen, A.

P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
[PubMed]

Campbell, M.

Carroll, J.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Choi, S. S.

Curcio, C. A.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

Davidson, N.

Delori, F. C.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Dithmar, S.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Dolar-Szczasny, J.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Donnelly, W.

Dorey, C. K.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Dubis, A. M.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Dubra, A.

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

Duncker, T.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Durrani, K.

K. Durrani and C. S. Foster, “Fundus autofluorescence imaging in posterior uveitis,” Semin. Ophthalmol. 27(5-6), 228–235 (2012).
[Crossref] [PubMed]

Egan, C. A.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Eguchi, H.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

El-Amir, A.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Evans, J. W.

Fitzke, F. W.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Foster, C. S.

K. Durrani and C. S. Foster, “Fundus autofluorescence imaging in posterior uveitis,” Semin. Ophthalmol. 27(5-6), 228–235 (2012).
[Crossref] [PubMed]

Friedman, N.

Fuller, A. R.

Gee, B. P.

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Goger, D. G.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Gray, D. C.

Greenberg, J. P.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Greenstein, V. C.

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Gualda, E. J.

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

Hamann, B.

Hawlina, M.

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

Hebert, T.

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Holder, G. E.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Holz, F. G.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Horwitz, J.

E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
[Crossref] [PubMed]

Huettmann, G.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Hunter, J. J.

Jorzik, J. J.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Kaliki, S.

A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
[Crossref] [PubMed]

Kaplan, A.

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Katome, T.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Keilhauer, C.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Koop, N.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Lee, W.

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Lenassi, E.

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

Liou, H. L.

Lu, R. W.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Mansmann, U.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Masella, B.

Merigan, W.

Merigan, W. H.

Mitamura, Y.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Mitamura-Aizawa, S.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Miura, Y.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Nagasawa, T.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Naito, T.

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

Orzekowsky-Schroeder, R.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Palczewska, G.

Palczewski, K.

Patel, S. S.

P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
[PubMed]

Pauleikhoff, D.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Porter, J.

Queener, H.

Reinholz, F.

Robson, A. G.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Romero-Borja, F.

Roorda, A.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Saggau, P.

P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
[PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Sharma, R.

Shields, C. L.

A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
[Crossref] [PubMed]

Sieber, H.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Smith, R. T.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Spaide, R. F.

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

Sparrow, J. R.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Staurenghi, G.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Steven, P.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Szaszák, M.

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

Tabacaru, M. R.

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Tocci, M. D.

M. D. Tocci, “How to Model the Human Eye in ZEMAX,” Opt. Design Eng.23, (2007).

Troeger, E.

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

Tsang, S. H.

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Tumbar, R.

Twietmeyer, T. H.

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Webster, A. R.

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Weinberger, A. W.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Weiter, J. J.

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

Werner, J. S.

Wilke, R.

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

Williams, D. R.

Wolf, S.

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Wolfing, J. I.

Woods, R. L.

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

Yao, X. C.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

Yin, L.

Zawadzki, R. J.

Zhang, Q. X.

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

Zhang, Y.

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Br. J. Ophthalmol. (1)

A. Bindewald, S. Schmitz-Valckenberg, J. J. Jorzik, J. Dolar-Szczasny, H. Sieber, C. Keilhauer, A. W. Weinberger, S. Dithmar, D. Pauleikhoff, U. Mansmann, S. Wolf, and F. G. Holz, “Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration,” Br. J. Ophthalmol. 89(7), 874–878 (2005).
[Crossref] [PubMed]

Cell. Mol. Biol. (Noisy-le-grand) (1)

P. Saggau, A. Bullen, and S. S. Patel, “Acousto-optic random-access laser scanning microscopy: fundamentals and applications to optical recording of neuronal activity,” Cell. Mol. Biol. (Noisy-le-grand) 44(5), 827–846 (1998).
[PubMed]

Curr. Opin. Ophthalmol. (1)

A. Almeida, S. Kaliki, and C. L. Shields, “Autofluorescence of intraocular tumours,” Curr. Opin. Ophthalmol. 24(3), 222–232 (2013).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (8)

J. P. Greenberg, T. Duncker, R. L. Woods, R. T. Smith, J. R. Sparrow, and F. C. Delori, “Quantitative fundus autofluorescence in healthy eyes,” Invest. Ophthalmol. Vis. Sci. 54(8), 5684–5693 (2013).
[Crossref] [PubMed]

E. Lenassi, E. Troeger, R. Wilke, and M. Hawlina, “Correlation between macular morphology and sensitivity in patients with retinitis pigmentosa and hyperautofluorescent ring,” Invest. Ophthalmol. Vis. Sci. 53(1), 47–52 (2012).
[Crossref] [PubMed]

A. G. Robson, A. El-Amir, C. Bailey, C. A. Egan, F. W. Fitzke, A. R. Webster, A. C. Bird, and G. E. Holder, “Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity,” Invest. Ophthalmol. Vis. Sci. 44(8), 3544–3550 (2003).
[Crossref] [PubMed]

Y. Miura, G. Huettmann, R. Orzekowsky-Schroeder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann, “Two-photon microscopy and fluorescence lifetime imaging of retinal pigment epithelial cells under oxidative stress,” Invest. Ophthalmol. Vis. Sci. 54(5), 3366–3377 (2013).
[Crossref] [PubMed]

A. Roorda, Y. Zhang, and J. L. Duncan, “High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease,” Invest. Ophthalmol. Vis. Sci. 48(5), 2297–2303 (2007).
[Crossref] [PubMed]

F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, and J. J. Weiter, “In vivo measurement of lipofuscin in Stargardt’s disease--fundus flavimaculatus,” Invest. Ophthalmol. Vis. Sci. 36(11), 2327–2331 (1995).
[PubMed]

T. Duncker, M. R. Tabacaru, W. Lee, S. H. Tsang, J. R. Sparrow, and V. C. Greenstein, “Comparison of near-infrared and short-wavelength autofluorescence in retinitis pigmentosa,” Invest. Ophthalmol. Vis. Sci. 54(1), 585–591 (2013).
[Crossref] [PubMed]

Q. X. Zhang, R. W. Lu, C. A. Curcio, and X. C. Yao, “In vivo confocal intrinsic optical signal identification of localized retinal dysfunction,” Invest. Ophthalmol. Vis. Sci. 53(13), 8139–8145 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15(6), 066004 (2010).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

E. Bosch, J. Horwitz, and D. Bok, “Phagocytosis of outer segments by retinal pigment epithelium: phagosome-lysosome interaction,” J. Histochem. Cytochem. 41(2), 253–263 (1993).
[Crossref] [PubMed]

J. Med. Invest. (1)

Y. Mitamura, S. Mitamura-Aizawa, T. Nagasawa, T. Katome, H. Eguchi, and T. Naito, “Diagnostic imaging in patients with retinitis pigmentosa,” J. Med. Invest. 59(1,2), 1–11 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Methods (1)

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[Crossref] [PubMed]

Retina (1)

S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird, and R. F. Spaide, “Fundus autofluorescence imaging: review and perspectives,” Retina 28(3), 385–409 (2008).
[Crossref] [PubMed]

Semin. Ophthalmol. (1)

K. Durrani and C. S. Foster, “Fundus autofluorescence imaging in posterior uveitis,” Semin. Ophthalmol. 27(5-6), 228–235 (2012).
[Crossref] [PubMed]

Other (6)

M. D. Tocci, “How to Model the Human Eye in ZEMAX,” Opt. Design Eng.23, (2007).

D. A. Atchinson and G. Smith, Optics of the Human Eye (Butterworth Heinemann, 2002)

J. Schwiegerling, Visual and Ophthalmic Optics (Spie, 2004).

A. Samy, S. Lightman, F. Ismetova, L. Talat, and O. Tomkins-Netzer, “Role of autofluorescence in inflammatory/infective diseases of the retina and choroid” J. Ophthalmol. 2014 (418193 2014).

F. G. Holz, A. Bird, R. F. Spaide, and S. Schmitz-Valckenberg, Atlas of Fundus Autofluorescence Imaging (Springer, 2007).

Á. Kusnyerik, B. Rózsa, J. Németh, and P. Maák, “Application of optical modeling to adapt acousto optic two-photon microscope for the clinical analysis of the human eye” (personal communication, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Zemax optical model shows the eye and the aspheric interface lens. Main parts of the eye are cornea, aqueous, crystalline lens and vitreous. The crystalline lens is composed of two parts; the pupil is attached to the front lens surface.
Fig. 2
Fig. 2 Schematic setup of our system. This is a schematic representation of an existing operational 3D acousto-optic TPM – figure shown in [30] - in which we intend to replace the sample with the human eye replacing the objective with the aspheric interface lens and the eye. In the setup’s optical model the human eye is represented by the Liou-Brennan eye model.
Fig. 3
Fig. 3 a.) Polychromatic spot distribution on axis generated by the model at three standard visible wavelengths with an entrance beam aperture that fills the 2.5 mm diameter pupil completely. b.) Spot distribution in the same eye model at 800 nm and 6 mm pupil opening, obtained with the same collimated beam. c.) Spot distribution with the same eye parameters at 800 nm and 6 mm pupil opening corrected with the aspheric interface lens.
Fig. 4
Fig. 4 a.) Dependence of the exciting spot diameter (primary vertical axis) and of the Strehl ratio (secondary vertical axis) on the distance between the focal point and the optical axis, measured along the x axis (x coordinate in µm). Dx is the spot size parallel to the x axis, Dy is the size measured perpendicular to the x axis. b.) Spot distribution at different distances from the center of the scanned area on the retina.
Fig. 5
Fig. 5 Modeling results comparing eye performances of the standard model and different patients. Top row: PSF at centre of the fovea with the bare eye, visible polychromatic light; Second row: MTF + image of a 0.1 mm structure (letter F) under cicumstances of the top row; Third row: PSF at 800 nm; (10 nm bandwidth) in the eyes placed in the instrument, where the acousto-optics and the interface lens compensate for the defects. a.) Results with the artificial model - axial length 23.93 mm. b.) Results with a measured patient’s eye of 22.6 mm axial length c.) Results with an astigmatic patient’s eye of 24.9 mm axial length.
Fig. 6
Fig. 6 Visualization of an example two-photon measurement performed on human retina. a.) Photoreceptor inner and outer segments b.) Retinal pigment epithelium c.) Ganglion cell layer d.) Inner nuclear layer. The images were collected ex vitro according to paragraph 2.5.

Tables (2)

Tables Icon

Table 1 Properties of ocular components in the human eye [13]

Tables Icon

Table 2 Geometrical parameters of the aspheric interface lens (even asphere)

Metrics