Abstract

Optical devices incorporating resonant periodic layers constitute an emerging technological area. Recent advances include spectral filters, broadband mirrors, and polarizers. Here, we demonstrate concurrent spatial and spectral filtering as a new outstanding attribute of this device class. This functionality is enabled by a unique, near-complete, reflection state that is discrete in both angular and spectral domains and realized with carefully-crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of ~4 mrad and ~1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fano resonance formula for lossy two-port systems

Jae Woong Yoon and Robert Magnusson
Opt. Express 21(15) 17751-17759 (2013)

Properties of wideband resonant reflectors under fully conical light incidence

Yeong Hwan Ko, Manoj Niraula, Kyu Jin Lee, and Robert Magnusson
Opt. Express 24(5) 4542-4551 (2016)

Wideband reflectors with zero-contrast gratings

Robert Magnusson
Opt. Lett. 39(15) 4337-4340 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
    [Crossref] [PubMed]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
    [Crossref] [PubMed]
  3. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13(5), 993–1005 (1996).
    [Crossref]
  4. J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
    [Crossref]
  5. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [Crossref] [PubMed]
  6. P. Reader-Harris, A. Ricciardi, T. Krauss, and A. Di Falco, “Optical guided mode resonance filter on a flexible substrate,” Opt. Express 21(1), 1002–1007 (2013).
    [Crossref] [PubMed]
  7. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
    [Crossref]
  8. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  9. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [Crossref] [PubMed]
  10. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
    [Crossref]
  11. J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
    [Crossref]
  12. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [Crossref] [PubMed]
  13. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
    [Crossref] [PubMed]
  14. C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref] [PubMed]
  15. J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
    [Crossref]
  16. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
    [Crossref]
  17. M. Flury, A. V. Tishchenko, and O. Parriaux, “The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings,” J. Lightwave Technol. 25(7), 1870–1878 (2007).
    [Crossref]
  18. N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
    [Crossref]
  19. J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks4, 1942–1948 (1995).
    [Crossref]
  20. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  21. R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly,” Opt. Lett. 38(6), 989–991 (2013).
    [Crossref] [PubMed]
  22. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [Crossref]
  23. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
    [Crossref] [PubMed]

2014 (1)

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

2013 (4)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

P. Reader-Harris, A. Ricciardi, T. Krauss, and A. Di Falco, “Optical guided mode resonance filter on a flexible substrate,” Opt. Express 21(1), 1002–1007 (2013).
[Crossref] [PubMed]

R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly,” Opt. Lett. 38(6), 989–991 (2013).
[Crossref] [PubMed]

2012 (2)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

2011 (2)

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

2010 (3)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

2008 (1)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (2)

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[Crossref] [PubMed]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

2001 (1)

1998 (1)

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

1996 (1)

1995 (1)

1985 (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Borisov, A. G.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Chua, S.-L.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Di Falco, A.

Ding, Y.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[Crossref] [PubMed]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks4, 1942–1948 (1995).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Flury, M.

Foley, J. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Gaylord, T. K.

Grann, E. B.

Hsu, C. W.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Jung, M. J.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks4, 1942–1948 (1995).
[Crossref]

Krauss, T.

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Lee, K. J.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Liu, Z. S.

Magnusson, R.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

R. Magnusson, “Flat-top resonant reflectors with sharply delimited angular spectra: an application of the Rayleigh anomaly,” Opt. Lett. 38(6), 989–991 (2013).
[Crossref] [PubMed]

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[Crossref] [PubMed]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
[Crossref] [PubMed]

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Moharam, M. G.

Morris, G. M.

Muys, P.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

Ottevaere, H.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Parriaux, O.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

M. Flury, A. V. Tishchenko, and O. Parriaux, “The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings,” J. Lightwave Technol. 25(7), 1870–1878 (2007).
[Crossref]

Peng, S.

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Phillips, J. D.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Pommet, D. A.

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Reader-Harris, P.

Ricciardi, A.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Seol, K. H.

Shabanov, S. V.

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

Shin, D.

Soljacic, M.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Song, S. H.

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18(25), 25702–25711 (2010).
[Crossref] [PubMed]

Thienpont, H.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Tibuleac, S.

Tishchenko, A. V.

Tonchev, S.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Vermeulen, N.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Wasylczyk, P.

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Wawro, D.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

Wu, W.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Yang, W.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Yoon, J.

Yoon, J. W.

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Young, P. P.

Young, S. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Zimmerman, S.

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

J. W. Yoon, K. J. Lee, W. Wu, and R. Magnusson, “Wideband omnidirectional polarization-insensitive light absorbers made with 1D silicon gratings,” Adv. Opt. Mater. 2(12), 1206–1212 (2014).
[Crossref]

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

J. W. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16(2), 518–520 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Laser Phys. Lett. (1)

N. Vermeulen, P. Wasylczyk, S. Tonchev, P. Muys, H. Ottevaere, O. Parriaux, and H. Thienpont, “Low-loss wavelength tuning of a mid-infrared Cr2+:ZnSe laser using a littrow-mounted resonant diffraction grating,” Laser Phys. Lett. 8(8), 606-612 (2011).
[Crossref]

Nano Lett. (1)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photonics 4(7), 466–470 (2010).
[Crossref]

Nature (1)

C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. C. Marinica, A. G. Borisov, and S. V. Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett. 100(18), 183902 (2008).
[Crossref] [PubMed]

Sensors (Basel) (1)

R. Magnusson, D. Wawro, S. Zimmerman, and Y. Ding, “Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel,” Sensors (Basel) 11(2), 1476–1488 (2011).
[Crossref] [PubMed]

Other (1)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of the IEEE International Conference on Neural Networks4, 1942–1948 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Theoretical reflectance showing spatial/spectral delta function characteristics. (a) Device schematic. The geometry is defined by the grating period Λ; fill factor F; total film thickness t and grating depth d. Refractive indices are nF = 2.52 for the TiO2 film, nS = 1.54 for the glass substrate, and nC = 1.0 for air. (b) Computed angle-dependent zero-order reflectance (R0) spectrum of an optimized device under TE-polarized light incidence (electric field vector along y). The optimized parameters are Λ = 696 nm, F = 0.33, t = 788 nm, and d = 210 nm. (c) Angle-dependent R0 spectrum of the same device in the subwavelength regime in the 1550~1700 nm wavelength region.

Fig. 2
Fig. 2

Diffraction efficiency pertinent to the device in Fig. 1. (a) Spectra of all propagating orders under normal incidence. (b) Angular spectra of all propagating orders at wavelength λ = 852 nm. Inset in (a) shows the localized electric field amplitude distribution at the reflection-peak wavelength. The field amplitude is normalized by the incident field amplitude. The y-axis in (a) and (b) are identical.

Fig. 3
Fig. 3

Interference effects associated with the discrete angular/spectral reflection. (a) Radiation pathways hypothesized to explain the observed spectra. The non-resonant pathway is formed by direct diffraction of the incident light. The resonant pathway is defined by leakage radiation stimulated by a TE0 mode coupling through second-order diffraction. Integer numbers label dominant coupling diffraction orders for waves indicated by the arrows. (b) Leakage radiation probabilities pertaining to a traveling TE0 mode at λ = 848 nm and θ = 0.565°. (c) Leakage radiation probabilities associated with counter-propagating leaky modes at λ = 852 nm and θ = 0.

Fig. 4
Fig. 4

Experimental demonstration of a discrete angular and spectral reflector. (a) Top-view and (b) cross-sectional scanning electron micrographs of the fabricated device. Red-dashed lines in (b) indicate the structure used in the numerical calculation (RCWA) for comparison. (c) Measured angle-dependent R0 spectrum. (d) Measured spectra and comparison with numerical calculation under normal incidence. (e) Angular spectrum at wavelength λ = 812 nm.

Fig. 5
Fig. 5

Spatial filtering with a discrete angular reflector element. (a) Conventional spatial filter using a pinhole/lens pair. (b) Proposed spatial/spectral filter fashioned with a resonant nanograting. (c) Reflectance spectrum of the spatial/spectral filter. The device parameters are Λ = 696 nm, F = 0.33, t = 2210 nm, and d = 210 nm. (d) Theoretical performance of the spatial filter with an input super-Gaussian laser beam with FWHM width of 16 mm carrying computer-generated pseudo-random noise.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A n = 4 η a b s η n ,
η n = lim k 0 A n m A m ,
E in ( x ) = E 0 [ 1 + a f ( x ) ] 1 / 2 exp [ 1 2 ( x w ) 4 ] ,
ε in ( θ ) = + E in ( x ) e i 2 π x cos θ / λ d x ,
E out ( x ) = 1 λ π / 2 + π / 2 ρ 0 ( θ ) ε in ( θ ) e i 2 π x cos θ / λ cos θ d θ ,

Metrics