Abstract

Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 – 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles

Mateusz A. Tyrk, W. Allan Gillespie, Gerhard Seifert, and Amin Abdolvand
Opt. Express 21(19) 21823-21828 (2013)

Condensation of Si-rich region inside soda-lime glass by parallel femtosecond laser irradiation

Masaaki Sakakura, Kouhei Yoshimura, Torataro Kurita, Masahiro Shimizu, Yasuhiko Shimotsuma, Naoaki Fukuda, Kazuyuki Hirao, and Kiyotaka Miura
Opt. Express 22(13) 16493-16503 (2014)

Controlled modification of optical and structural properties of glass with embedded silver nanoparticles by nanosecond pulsed laser irradiation

Lauren A. H. Fleming, Guang Tang, Svetlana A. Zolotovskaya, and Amin Abdolvand
Opt. Mater. Express 4(5) 969-975 (2014)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  3. M. A. Tyrk, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Picosecond pulsed laser induced shape transformation of metallic nanoparticles embedded in a glass matrix,” Opt. Express 21(19), 21823–21828 (2013).
    [Crossref] [PubMed]
  4. A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
    [Crossref]
  5. A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-short Pulsed Laser Engineered Metal-Glass Nanocomposite (SpringerBrief in Physics, Springer, 2013).
  6. M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
    [Crossref]
  7. J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
    [Crossref]
  8. G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
    [Crossref] [PubMed]
  9. D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
    [Crossref] [PubMed]
  10. D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
    [Crossref]
  11. M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
    [Crossref] [PubMed]
  12. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
    [Crossref]
  13. M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
    [Crossref] [PubMed]
  14. A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28(9), 716–718 (2003).
    [Crossref] [PubMed]
  15. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
    [Crossref]
  16. V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993).
    [Crossref]
  17. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [Crossref]
  18. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
    [Crossref]
  19. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
    [Crossref] [PubMed]
  20. Y. Jin, O. J. Allegre, W. Perrie, K. Abrams, J. Ouyang, E. Fearon, S. P. Edwardson, and G. Dearden, “Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions,” Opt. Express 21(21), 25333–25343 (2013).
    [Crossref] [PubMed]
  21. J. Ouyang, W. Perrie, O. J. Allegre, T. Heil, Y. Jin, E. Fearon, D. Eckford, S. P. Edwardson, and G. Dearden, “Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring,” Opt. Express 23(10), 12562–12572 (2015).
    [Crossref] [PubMed]
  22. S. Tripathi and K. C. Toussaint., “Versatile generation of optical vector fields and vector beams using a non-interferometric approach,” Opt. Express 20(10), 10788–10795 (2012).
    [Crossref] [PubMed]
  23. Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, and C.-S. Guo, “Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators,” Opt. Express 22(2), 1636–1644 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

Z.-Y. Rong, Y.-J. Han, S.-Z. Wang, and C.-S. Guo, “Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators,” Opt. Express 22(2), 1636–1644 (2014).
[Crossref] [PubMed]

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

S. Tripathi and K. C. Toussaint., “Versatile generation of optical vector fields and vector beams using a non-interferometric approach,” Opt. Express 20(10), 10788–10795 (2012).
[Crossref] [PubMed]

2011 (2)

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

2010 (1)

D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
[Crossref] [PubMed]

2009 (2)

A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
[Crossref]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[Crossref] [PubMed]

2004 (1)

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28(9), 716–718 (2003).
[Crossref] [PubMed]

1999 (1)

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

1998 (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

1993 (1)

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993).
[Crossref]

1991 (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[Crossref]

Abdolvand, A.

Abrams, K.

Aguirre, C. M.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

Allegre, O. J.

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Baraldi, G.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
[Crossref] [PubMed]

Beleites, M.

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

Berg, K.-J.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[Crossref]

Berger, A.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[Crossref]

Blaschek, H.-H.

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

Buckle, M.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cravetchi, I.

Dearden, G.

Doster, J.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

Eckford, D.

Edwardson, S. P.

Farafonov, V. G.

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993).
[Crossref]

Fearon, E.

Furube, A.

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

Gillespie, W. A.

Gonzalo, J.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
[Crossref] [PubMed]

Gordel, M.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Graener, G.

A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
[Crossref]

Graener, H.

Guo, C.-S.

Halas, N. J.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Han, Y.-J.

Hashimoto, S.

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
[Crossref] [PubMed]

Heil, T.

Hernandez-Rueda, J.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

Hofmeister, H.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[Crossref]

Jin, Y.

Kaempfe, M.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Lange, J.

Matczyszyn, K.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Matyssek, C.

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

Moran, C. E.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

Nogues, C.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Okamoto, T.

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Olesiak-Banska, J.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Ouyang, J.

Perrie, W.

Podlipensky, A.

Rainer, T.

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

Rong, Z.-Y.

Samoc, M.

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Seifert, G.

M. A. Tyrk, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Picosecond pulsed laser induced shape transformation of metallic nanoparticles embedded in a glass matrix,” Opt. Express 21(19), 21823–21828 (2013).
[Crossref] [PubMed]

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
[Crossref]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[Crossref] [PubMed]

A. Podlipensky, J. Lange, G. Seifert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28(9), 716–718 (2003).
[Crossref] [PubMed]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

Siegel, J.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
[Crossref] [PubMed]

Skrzypczak, U.

Solis, J.

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
[Crossref] [PubMed]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
[Crossref]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[Crossref] [PubMed]

Toussaint, K. C.

Tripathi, S.

Tyrk, M. A.

Unal, A. A.

Uwada, T.

D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
[Crossref] [PubMed]

Voshchinnikov, N. V.

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993).
[Crossref]

Wang, S.-Z.

Werner, D.

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
[Crossref] [PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

Young, J. F.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[Crossref]

A. Stalmashonak, G. Graener, and G. Seifert, “Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses,” Appl. Phys. Lett. 94(19), 193111 (2009).
[Crossref]

M. Kaempfe, T. Rainer, K.-J. Berg, G. Seifert, and H. Graener, “Ultrashort laser pulse induced deformation of silver nanoparticles in glass,” Appl. Phys. Lett. 74(9), 1200 (1999).
[Crossref]

J. Doster, G. Baraldi, J. Gonzalo, J. Solis, J. Hernandez-Rueda, and J. Siegel, “Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses,” Appl. Phys. Lett. 104(15), 153106 (2014).
[Crossref]

Astrophys. Space Sci. (1)

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci. 204(1), 19–86 (1993).
[Crossref]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[Crossref]

J. Phys. Chem. B (2)

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshels under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108(22), 7040–7045 (2004).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

D. Werner, A. Furube, T. Okamoto, and S. Hashimoto, “Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-proble spectroscopy investigations revealing coulomb explosion,” J. Phys. Chem. C 115(17), 8503–8512 (2011).
[Crossref]

Langmuir (1)

D. Werner, S. Hashimoto, and T. Uwada, “Remarkable photothermal effect of interband excitation on nanosecond laser-induced reshaping and size reduction of pseudospherical gold nanoparticles in aqueous solution,” Langmuir 26(12), 9956–9963 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

M. Beleites, C. Matyssek, H.-H. Blaschek, and G. Seifert, “Near-field optical microscopy of femtosecond-laser-reshaped silver nanoparticles in dielectric matrix,” Nanoscale Res. Lett. 7(1), 315 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

G. Baraldi, J. Gonzalo, J. Solis, and J. Siegel, “Reorganizing and shaping of embedded near-coalescence silver nanoparticles with off-resonance femtosecond laser pulses,” Nanotechnology 24(25), 255301 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, and M. Samoc, “Post-synthesis reshaping of gold nanorods using a femtosecond laser,” Phys. Chem. Chem. Phys. 16(1), 71–78 (2014).
[Crossref] [PubMed]

Z. Phys. D (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[Crossref]

Other (2)

A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-short Pulsed Laser Engineered Metal-Glass Nanocomposite (SpringerBrief in Physics, Springer, 2013).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science, Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Logotype (16 mm × 20 mm) produced by ps pulsed laser assisted reshaping of a piece of MGN at 532 nm. The sample is shown for vertically (a) and horizontally (b) polarized illumination (indicated by the white arrows).

Fig. 2
Fig. 2

Experimental setup used for irradiation of 3 mm × 3 mm squares and single lines in MGNs. A linearly polarised beam was expanded and then passed through the s-wave plate that changed the polarization state of the laser to either radial or azimuthal (depending on the rotation angle of the s-wave plate).

Fig. 3
Fig. 3

Setup used for the characterisation of the MGN with reshaped Ag nanoparticles.

Fig. 4
Fig. 4

Extinction spectra as a function of wavelength for samples irradiated with 2000 pulses per spot, laser fluence of ~60 mJ/cm2, repetition rate of 200 kHz. Samples irradiated with (a) radial and (b) azimuthal polarizations. Spectra measured for different incident polarization directions of the illumination. The turquoise line shows extinction spectrum of the non-modified area of the sample that has spherical Ag nanoparticles. The microscope images of the 3 × 3 mm irradiated areas (c)-(f) of the sample in transmission with the linearly polarized illumination. Black arrows indicate the incident light polarization direction.

Fig. 5
Fig. 5

Digital microscope images of the laser-modified single lines taken in transmission with different polarization directions of the illumination (white arrows). The lines were irradiated with (a) azimuthally and (b) radially polarized laser beams. The black arrows show the direction of irradiation. The blue/green areas of the lines (indicated by the red marker on the left hand side insets) show the long wavelength shifted part of the SPR - Ag nanoparticles are orientated parallel to the polarization direction of the illumination.

Fig. 6
Fig. 6

Normalized SHG intensities as a function of the normalized line thickness for (a) azimuthally polarized irradiation and (b) radially polarized irradiation. Cross-sectional scans for different excitation beam (1064 nm) polarization directions - indicated by black arrows. Simplified depiction of the Ag ellipsoids orientations (c) and (d) within the line cross section according to (a) and (b) for both irradiation polarization directions - shown with red arrows.

Metrics