Abstract

Given the tight constraints on the wavelength stability of sources in optical networks, the thermal crosstalk between operating devices in a ten-channel thermally-tunable slotted laser array for DWDM applications has been investigated. It was found experimentally the current standard thermal solution with the laser array chip mounted on an AlN carrier does not allow for wavelength stability of ± 25 GHz ( ± 2 K) with a temperature rise of 5 K measured in a device with 100 mA (CW) applied to a neighbouring laser (device spacing = 360 µm). A combined experimental/numerical approach revealed solid state submounts comprising diamond or highly ordered pyrolytic graphite are inadequate to reduce crosstalk below an allowable level. Numerical simulations of advanced cooling technologies reveal a microfluidic enabled substrate would reduce thermal crosstalk between operational devices on the chip to acceptable levels. Critically our simulations show this reduced crosstalk is not at the expense of device tunability as the thermal resistance of individual lasers remains similar for the base and microfluidic cases.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermal performance and limitations of silicon–substrate packaged GaAs laser arrays

R. A. Laff, L. D. Comerford, J. D. Crow, and M. J. Brady
Appl. Opt. 17(5) 778-784 (1978)

Progress in high-power continuous-wave quantum cascade lasers [Invited]

Pedro Figueiredo, Matthew Suttinger, Rowel Go, Eugene Tsvid, C. Kumar N. Patel, and Arkadiy Lyakh
Appl. Opt. 56(31) H15-H23 (2017)

High-power flip-chip semiconductor disk laser in the 1.3  μm wavelength band

Antti Rantamäki, Alexei Sirbu, Esa J. Saarinen, Jari Lyytikäinen, Alexandru Mereuta, Vladimir Iakovlev, Eli Kapon, and Oleg G. Okhotnikov
Opt. Lett. 39(16) 4855-4858 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
    [Crossref]
  2. I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).
  3. K. Sato and M. Murakami, “Experimental investigation of thermal crosstalk in a distributed feedback laser array,” IEEE Photonics Technol. Lett. 3(6), 501–503 (1991).
    [Crossref]
  4. K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).
  5. B. Klepser and H. Hillmer, “Investigations of thermal crosstalk in laser arrays for WDM applications,” J. Lightwave Technol. 16(10), 1888–1894 (1998).
    [Crossref]
  6. G. Gilardi, W. Yao, H. R. Haghighi, M. K. Smit, and M. J. Wale, “Substrate Thickness Effects on Thermal Crosstalk in InP-Based Photonic Integrated Circuits,” J. Lightwave Technol. 32(17), 3061–3066 (2014).
    [Crossref]
  7. G. Gilardi, W. Yao, H. Rabbani Haghighi, X. J. M. Leijtens, M. K. Smit, and M. J. Wale, “Deep trenches for thermal crosstalk reduction in inp-based photonic integrated circuits,” J. Lightwave Technol. 32, 4262–4268 (2014).
  8. Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
    [Crossref]
  9. Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
    [Crossref]
  10. Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
    [Crossref]
  11. W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
    [Crossref] [PubMed]
  12. Spectral Grids for WDM Applications, DWDM Frequency Grid (International Telecommunications Union, 2012).
  13. L. A. Coldren, W. C. Corzine, and M. L. Masanovic, Diode Lasers and Photonics Integrated Circuits, 2nd ed. Wiley Series in Microwave and Optical Engineering (Wiley, 2012).
  14. V. Palankovski, “Simulation of heterojunction bipolar transistors,” Institute of Microelectronics, TU Wien (2000).
  15. S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).
  16. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 2. Thermal Conductivity - Nonmetallic Solids, The TPRC Data Series (TPRC, 1971), Vol. 2.
  17. G. A. Slack, “Anisotropic Thermal Conductivity of Pyrolytic Graphite,” Phys. Rev. 127, 694–701 (1962).
  18. L. T. Yeh and R. C. Chu, Thermal Managment of Microelectronic Equipment, ASME Book Series on Electronic Packaging (ASME Press, 2002).

2014 (3)

2013 (1)

2012 (1)

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

2010 (1)

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

2007 (1)

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).

2006 (1)

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

1998 (1)

1997 (1)

K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).

1991 (1)

K. Sato and M. Murakami, “Experimental investigation of thermal crosstalk in a distributed feedback laser array,” IEEE Photonics Technol. Lett. 3(6), 501–503 (1991).
[Crossref]

1962 (1)

G. A. Slack, “Anisotropic Thermal Conductivity of Pyrolytic Graphite,” Phys. Rev. 127, 694–701 (1962).

Abdullaev, A.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Adachi, S.

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).

Barry, L. P.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Byrne, D.

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Corbett, B.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Donegan, J. F.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Duan, G. H.

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Duan, G.-H.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

Enright, R.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Frizzell, R.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

Gilardi, G.

Goodson, K. E.

K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).

Guo, W.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Guo, W. H.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Guo, W.-H.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Haghighi, H. R.

Hernon, D.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

Hillmer, H.

Huynh, T. N.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Klepser, B.

Kurabayashi, K.

K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).

Lambkin, P.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Lei, S.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Leijtens, X. J. M.

Levaufre, G.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Lu, Q.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

Lu, Q. Y.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Lynch, M.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Mathews, I.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Murakami, M.

K. Sato and M. Murakami, “Experimental investigation of thermal crosstalk in a distributed feedback laser array,” IEEE Photonics Technol. Lett. 3(6), 501–503 (1991).
[Crossref]

Nawrocka, M.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Nolan, K.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

O’Callaghan, J.

W.-H. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O’Callaghan, and J. F. Donegan, “Nine-channel wavelength tunable single mode laser array based on slots,” Opt. Express 21(8), 10215–10221 (2013).
[Crossref] [PubMed]

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Pease, R. F. W.

K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).

Phelan, R.

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Rabbani Haghighi, H.

Sato, K.

K. Sato and M. Murakami, “Experimental investigation of thermal crosstalk in a distributed feedback laser array,” IEEE Photonics Technol. Lett. 3(6), 501–503 (1991).
[Crossref]

Shen, A.

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Slack, G. A.

G. A. Slack, “Anisotropic Thermal Conductivity of Pyrolytic Graphite,” Phys. Rev. 127, 694–701 (1962).

Smit, M. K.

Wale, M. J.

Weldon, V.

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

Yao, W.

Bell Labs Tech. J. (1)

R. Enright, S. Lei, K. Nolan, I. Mathews, A. Shen, G. Levaufre, R. Frizzell, G.-H. Duan, and D. Hernon, “A vision for thermally integrated photonics systems,” Bell Labs Tech. J. 19, 31–45 (2014).
[Crossref]

Electron. Lett. (1)

Q. Lu, W. Guo, A. Abdullaev, M. Nawrocka, T. N. Huynh, J. O’Callaghan, M. Lynch, V. Weldon, L. P. Barry, and J. F. Donegan, “Two-section singlemode lasers based on slots suitable for photonic integration,” Electron. Lett. 48(15), 945–946 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (3)

K. Sato and M. Murakami, “Experimental investigation of thermal crosstalk in a distributed feedback laser array,” IEEE Photonics Technol. Lett. 3(6), 501–503 (1991).
[Crossref]

Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett, “Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method,” IEEE Photonics Technol. Lett. 18(24), 2605–2607 (2006).
[Crossref]

Q. Lu, W.-H. Guo, D. Byrne, and J. F. Donegan, “Design of slotted single-mode lasers suitable for photonic integration,” IEEE Photonics Technol. Lett. 22(11), 787–789 (2010).
[Crossref]

IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. (1)

K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, “Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon. Packag. Manuf. Technol. Part B Adv. Packag. 20, 104–109 (1997).

J. Appl. Phys. (1)

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys. 102, 063502 (2007).

J. Lightwave Technol. (3)

Opt. Express (1)

Phys. Rev. (1)

G. A. Slack, “Anisotropic Thermal Conductivity of Pyrolytic Graphite,” Phys. Rev. 127, 694–701 (1962).

Other (6)

L. T. Yeh and R. C. Chu, Thermal Managment of Microelectronic Equipment, ASME Book Series on Electronic Packaging (ASME Press, 2002).

Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of Matter - The TPRC Data Series. Volume 2. Thermal Conductivity - Nonmetallic Solids, The TPRC Data Series (TPRC, 1971), Vol. 2.

I. Mathews, S. Lei, K. Nolan, G. Levaufre, A. Shen, G. H. Duan, B. Corbett, and R. Enright, “Towards AlN optical cladding layers for thermal management in hybrid lasers,” in Proceedings of SPIE Microtechnologies 2015 (SPIE, 2015).

Spectral Grids for WDM Applications, DWDM Frequency Grid (International Telecommunications Union, 2012).

L. A. Coldren, W. C. Corzine, and M. L. Masanovic, Diode Lasers and Photonics Integrated Circuits, 2nd ed. Wiley Series in Microwave and Optical Engineering (Wiley, 2012).

V. Palankovski, “Simulation of heterojunction bipolar transistors,” Institute of Microelectronics, TU Wien (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic outline of the 10-channel slotted laser array with inset a SEM image of the fabricated slots and the cross-section outline of the device.

Fig. 2
Fig. 2

Individual laser channel characterisation. (a & b) Continuous wave (CW) LIV curves for laser channels. 1 – 10 on the laser bar performed at a copper heat sink temperature of Ths = 20 °C, (c) measured spectral output from the ten channels showing the C-band coverage at a heat sink temperature of 20 °C (d) Wavelength temperature coefficient dλ/dT for laser device 5 in the array.

Fig. 3
Fig. 3

Change in peak output wavelength of laser 5 as a function of neighbouring operational laser under 100 mA (CW) operation. Data was measured for the chip placed directly on the heatsink or with a grease thermal interface layer.

Fig. 4
Fig. 4

Schematic cross-section of the simulated laser structure (not to scale). The boundary condition is highlighted (dashed line).

Fig. 5
Fig. 5

Measured and simulated current-voltage characteristics of laser device 5 at 20°C with the simulated and measured thermal resistance of the device also shown.

Fig. 6
Fig. 6

Comparison of the simulated (lines) and measured (symbols) temperature rise in the active region of device 5 as a function of operating laser and applied current (a) lasers 1-4 (b) lasers 6-10.

Fig. 7
Fig. 7

Comparison of the simulated (NUM) and experimentally measured (EXP) crosstalk thermal resistance (with grease applied between the chip and heat sink) as a function of operational neighbouring laser with an applied current of 100 mA (CW).

Fig. 8
Fig. 8

Effect of submount material properties. (a) Comparison of the simulated temperature rise in the active region of laser 5, as a function of neighbouring laser operated at 100 mA (CW) applied current, with different materials considered for the submount. (b) Laser device 5 thermal resistance for different submount materials.

Fig. 9
Fig. 9

(a) Simulated temperature rise in the active region of laser 5, as a function of neighbouring laser operated at 100 mA (CW) applied current corresponding to the AlN submount used in our experiments or a submount made of diamond or one with micro-fluidic channel cooling embedded in the substrate. (b) Simulated temperature profile of two operating lasers in the array when a microchannel fluid cooling solution is embedded in an AlN submount.

Tables (1)

Tables Icon

Table 1 Thermal and electrical properties of the materials present in the laser structure found in [14,15].

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d p = m λ B 2 n e f f
R t h = d λ / d P d λ / d T
P D = I 2 R s + I ( V d + V s ) P o
[ k ( T ) T ] = j E P o
j = 0
P o = { f ( I ) : in the active region 0 : elsewhere

Metrics