Abstract

A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength

Hidetsugu Yoshida, Takaki Hatae, Hisanori Fujita, Masahiro Nakatsuka, and Shigeru Kitamura
Opt. Express 17(16) 13654-13662 (2009)

Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz

Viliam Kmetik, Henryk Fiedorowicz, Alexander A. Andreev, Klaus J. Witte, Hiroyuki Daido, Hisanori Fujita, Masahiro Nakatsuka, and Tatsuhiko Yamanaka
Appl. Opt. 37(30) 7085-7090 (1998)

Generation of 300  ps laser pulse with 1.2  J energy by stimulated Brillouin scattering in water at 532  nm

Chengyong Feng, Xiaozhen Xu, and Jean-Claude Diels
Opt. Lett. 39(12) 3367-3370 (2014)

References

  • View by:
  • |
  • |
  • |

  1. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
    [Crossref] [PubMed]
  2. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
    [Crossref] [PubMed]
  3. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5(12), 516 (1980).
    [Crossref] [PubMed]
  4. G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
    [Crossref]
  5. V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
    [Crossref]
  6. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
    [Crossref] [PubMed]
  7. C. Feng, X. Xu, and J. C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
    [Crossref] [PubMed]
  8. X. H. Zhu, Z. W. Lu, Y. L. Wang, X. W. An, and M. Li, “High Stability, Single Frequency 136ps Laser Pulse Generation Based on Stimulated Brillouin Scattering,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2013), paper CTuT2. paper JTh2A.063. http://www.opticsinfobase.org/abstract.cfm?uri=CLEO_QELS-2013-JTh2A.63
  9. S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).
  10. X. H. Zhu, Z. W. Lu, and Y. L. Wang, “A new method for measuring the threshold of stimulated Brillouin scattering,” Chin. Phys. B 21(7), 074205 (2012).
    [Crossref]
  11. H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010).
    [Crossref] [PubMed]
  12. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
    [Crossref]
  13. H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
    [Crossref]
  14. A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
    [Crossref]
  15. T. R. Loree, D. E. Watkins, T. M. Johnson, N. A. Kurnit, and R. A. Fisher, “Phase locking two beams by means of seeded Brillouin scattering,” Opt. Lett. 12(3), 178–180 (1987).
    [Crossref] [PubMed]
  16. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  17. R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
    [Crossref]
  18. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
    [Crossref] [PubMed]
  19. S. Li, Y. Wang, Z. Lu, L. Ding, P. Du, Y. Chen, Z. Zheng, D. Ba, Y. Dong, H. Yuan, Z. Bai, Z. Liu, and C. Cui, “High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system,” Opt. Express 23(2), 681–689 (2015).
    [Crossref] [PubMed]
  20. M. D. Skeldon and R. Bahr, “Stimulated rotational Raman scattering in air with a high-power broadband laser,” Opt. Lett. 16(6), 366–368 (1991).
    [Crossref] [PubMed]
  21. M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in chirped-pulse amplification,” Opt. Lett. 19(24), 2149–2151 (1994).
    [Crossref] [PubMed]
  22. Z. Lu, W. Gao, W. He, Z. Zhang, and W. Hasi, “High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier,” Opt. Express 17(13), 10675–10680 (2009).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

C. Feng, X. Xu, and J. C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
[Crossref] [PubMed]

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

2012 (2)

2011 (1)

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
[Crossref]

2007 (1)

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

2005 (2)

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

2000 (1)

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

1994 (1)

1992 (1)

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
[Crossref]

1991 (1)

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1987 (1)

1980 (1)

Ajiya, M.

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010).
[Crossref] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Al-Asadi, H. A.

Al-Mansoori, M. H.

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010).
[Crossref] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Anderson, K. S.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Ba, D.

Bahr, R.

Bai, Z.

Betti, R.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Callahan, D. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Casey, D. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Celliers, P. M.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Cerjan, C.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Chen, Y.

Cheng, X. A.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Chu, R.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
[Crossref]

Cui, C.

Dajani, I.

Dement’ev, A. S.

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

Demin, I.

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

Deng, S. Y.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Dewald, E. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Diels, J. C.

Ding, L.

Ditmire, T.

Dittrich, T. R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Dong, Y.

Döppner, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Du, P.

Falk, J.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
[Crossref]

Feng, C.

Fisher, R. A.

Fujita, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Gao, W.

Guo, H.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Guo, S. F.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Hasi, W.

Hatae, T.

He, W.

Hinkel, D. E.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Hitam, S.

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010).
[Crossref] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Hon, D. T.

Hopkins, L. F. B.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Hurricane, O. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Johnson, T. M.

Kanefsky, M.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
[Crossref]

Kitamura, S.

Kline, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Kmetik, V.

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Kong, H. J.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Kurnit, N. A.

Le Pape, S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Lee, D. W.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Lee, S. K.

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Li, S.

Liu, Z.

Loree, T. R.

Lu, Q. S.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Lu, Z.

Lu, Z. W.

X. H. Zhu, Z. W. Lu, and Y. L. Wang, “A new method for measuring the threshold of stimulated Brillouin scattering,” Chin. Phys. B 21(7), 074205 (2012).
[Crossref]

Ma, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

MacPhee, A. G.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Mahdi, M. A.

H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010).
[Crossref] [PubMed]

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Marcus, G.

G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
[Crossref]

Milovich, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Mokhtar, M.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Moore, G. T.

Murauskas, E.

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

Naderi, S.

Nakatsuka, M.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Pak, A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Park, H.-S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Pasmanik, G.

G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
[Crossref]

Patel, P. K.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Pearl, S.

G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
[Crossref]

Perkins, L. J.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Perry, M. D.

Remington, B. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Robin, C.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Salmonson, J. D.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Saripan, M. I.

Shee, Y. G.

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Skeldon, M. D.

Slavinskis, S.

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

Solodov, A. A.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Springer, P. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Stuart, B. C.

Theobald, W.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Tommasini, R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. L.

X. H. Zhu, Z. W. Lu, and Y. L. Wang, “A new method for measuring the threshold of stimulated Brillouin scattering,” Chin. Phys. B 21(7), 074205 (2012).
[Crossref]

Watkins, D. E.

Xu, X.

Yamanaka, T.

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Yin, Y.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Yoshida, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Yuan, H.

Zeringue, C.

Zhang, Z.

Zheng, Z.

Zhou, C. D.

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Zhou, P.

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Zhu, X. H.

X. H. Zhu, Z. W. Lu, and Y. L. Wang, “A new method for measuring the threshold of stimulated Brillouin scattering,” Chin. Phys. B 21(7), 074205 (2012).
[Crossref]

Appl. Phys. Lett. (1)

H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation,” Appl. Phys. Lett. 86(5), 051111 (2005).
[Crossref]

Chin. Phys. B (1)

X. H. Zhu, Z. W. Lu, and Y. L. Wang, “A new method for measuring the threshold of stimulated Brillouin scattering,” Chin. Phys. B 21(7), 074205 (2012).
[Crossref]

J. Appl. Phys. (2)

G. Marcus, S. Pearl, and G. Pasmanik, “Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm,” J. Appl. Phys. 103(10), 103105 (2008).
[Crossref]

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71(10), 4653–4658 (1992).
[Crossref]

Laser Phys. Lett. (1)

M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009).
[Crossref]

Nature (1)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. B. Hopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506(7488), 343–348 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, “Shock ignition of thermonuclear fuel with high areal density,” Phys. Rev. Lett. 98(15), 155001 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

V. Kmetik, H. Yoshida, H. Fujita, M. Nakatsuka, and T. Yamanaka, “Very high energy SBS phase conjugation and pulse compression in fluorocarbon liquids,” Proc. SPIE 3889, 818–826 (2000).
[Crossref]

Quantum Electron. (1)

A. S. Dement’ev, I. Demin, E. Murauskas, and S. Slavinskis, “Compression of pulses during their amplification in the field of a focused counter propagating pump pulse of the same frequency and width in media with electrostriction nonlinearity,” Quantum Electron. 41(2), 153–159 (2011).
[Crossref]

Wuli Xuebao (1)

S. F. Guo, Q. S. Lu, X. A. Cheng, P. Zhou, S. Y. Deng, and Y. Yin, “Influence of Stokes component in reflected light on stimulated Brillouin scattering process,” Wuli Xuebao 53, 1831–1835 (2005).

Other (1)

X. H. Zhu, Z. W. Lu, Y. L. Wang, X. W. An, and M. Li, “High Stability, Single Frequency 136ps Laser Pulse Generation Based on Stimulated Brillouin Scattering,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2013), paper CTuT2. paper JTh2A.063. http://www.opticsinfobase.org/abstract.cfm?uri=CLEO_QELS-2013-JTh2A.63

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated waveform of pump light (a) and reflected light (b), output pulse-width (c) and energy reflectivity (d) with different pump energy

Fig. 2
Fig. 2

Schematic of generation progress of reflected pulse. The pump pulse incidents into the Brillouin cell from the left side and the excited Stokes light transmits in the opposite direction. The waveforms shown in the left represent the reflected pulses with the pump intensity below (①) and above (②) the “Noise-initiated” SBS threshold.

Fig. 3
Fig. 3

Schematic diagram of the experimental setup

Fig. 4
Fig. 4

Typical waveforms of pump light (a) and Stokes light (b) with different energy in our experiment. Inset: waveform of the compressed pulse with pump energy of 5.36 J.

Fig. 5
Fig. 5

The near-field pattern (a) and its gray-scale histogram (b) of the incident light

Fig. 6
Fig. 6

Output pulse-width (FWHM) with different pump energy

Fig. 7
Fig. 7

Output energy (a) and energy conversion efficiency (b) with different pump energy

Tables (1)

Tables Icon

Table 1 Simulation parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A 1 z + n c A 1 t = i ω γ e 4 n c ρ 0 ρ A 2
A 2 z + n c A 2 t = i ω γ e 4 n c ρ 0 ρ * A 1
ρ t + Γ 2 ρ = i γ e q 2 16 π Ω B A 1 A 2 * + f
A 1 j + 1 m + 1 A 1 j m + 1 n Δ z c Δ t ( A 1 j m + 1 A 1 j m ) = G A 2 j m + 1 ( p j m + A 1 j m + 1 A 2 j m + 1 * ) G f A 2 j m + 1 ( q j m + f j m + 1 )
A 2 j + 1 m + 1 A 2 j m + 1 + n Δ z c Δ t ( A 2 j m + 1 A 2 j m ) = G A 1 j m + 1 ( p j m + A 1 j m + 1 A 2 j m + 1 * ) * + G f A 1 j m + 1 ( q j m + f j m + 1 ) *
A 2 ( j = J , m ) = { r η A 1 ( j = 0 , m [ T t / Δ t ] ) m > [ T t / Δ t ] 0 o t h e r s A 2 ( j < J , m ) = 0
ρ ( j = 0 , m ) = f 0 , m
ρ ( j , m = 0 ) = f j , 0
B = 2 π λ 0 L n 2 I ( x , y ) d z

Metrics