Abstract

We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves

Kai-Da Xu, Ying Jiang Guo, and Xianjin Deng
Opt. Express 27(4) 4354-4363 (2019)

High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies

Dawei Zhang, Kuang Zhang, Qun Wu, Xumin Ding, and Xuejun Sha
Opt. Express 25(3) 2121-2129 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
    [Crossref] [PubMed]
  3. C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
    [Crossref] [PubMed]
  4. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Efficient terahertz slot-line waveguides,” Opt. Express 19(26), B47–B55 (2011).
    [Crossref] [PubMed]
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  7. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
    [Crossref] [PubMed]
  8. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  10. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
    [Crossref] [PubMed]
  11. A. I. Fernández-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
    [Crossref]
  12. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [Crossref] [PubMed]
  13. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
    [Crossref] [PubMed]
  14. D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
    [Crossref] [PubMed]
  15. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  16. X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
    [Crossref] [PubMed]
  17. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  18. X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
    [Crossref]
  19. X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
    [Crossref] [PubMed]
  20. B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
    [Crossref] [PubMed]
  21. H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
    [Crossref]
  22. L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
    [Crossref]
  23. A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
    [Crossref]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

2015 (1)

X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref] [PubMed]

2014 (5)

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

X. Liu, Y. Feng, K. Chen, B. Zhu, J. Zhao, and T. Jiang, “Planar surface plasmonic waveguide devices based on symmetric corrugated thin film structures,” Opt. Express 22(17), 20107–20116 (2014).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

2013 (3)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[Crossref]

2011 (3)

2010 (1)

2009 (3)

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

A. I. Fernández-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

1989 (1)

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

1987 (1)

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Chen, J. C.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

Chen, K.

Cheng, Q.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Chi, C.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

Cui, T. J.

X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Darcie, T. E.

Duling, I. N.

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

Feng, Y.

Fernandez-Dominguez, A. I.

Fernández-Dominguez, A. I.

A. I. Fernández-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

Fernández-Domínguez, A. I.

Gao, X.

X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

D. Martin-Cano, O. Quevedo-Teruel, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Waveguided spoof surface plasmons with deep-subwavelength lateral confinement,” Opt. Lett. 36(23), 4635–4637 (2011).
[Crossref] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[Crossref] [PubMed]

A. I. Fernández-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Grischkowsky, D.

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

Gu, C.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Heshmat, B.

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Jiang, T.

Jiang, W. X.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, Y.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[Crossref]

Li, Z.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Liao, Z.

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

B. C. Pan, Z. Liao, J. Zhao, and T. J. Cui, “Controlling rejections of spoof surface plasmon polaritons using metamaterial particles,” Opt. Express 22(11), 13940–13950 (2014).
[Crossref] [PubMed]

Liu, L.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Liu, X.

Ma, A.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[Crossref]

Ma, H. F.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

Martin-Cano, D.

Martin-Moreno, L.

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[Crossref] [PubMed]

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Moreno, E.

Nesterov, M. L.

Ning, P.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Niu, Z.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Pahlevaninezhad, H.

Pan, B. C.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Quevedo-Teruel, O.

Shen, X.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Shen, X. P.

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Xu, B.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Zhang, X.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Zhou, L.

X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref] [PubMed]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

Zhu, B.

Appl. Phys. Lett. (2)

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, and W. X. Jiang, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Gao, L. Zhou, Z. Liao, H. F. Ma, and T. J. Cui, “An ultra-wideband surface plasmonic filter in microwave frequency,” Appl. Phys. Lett. 104(19), 191603 (2014).
[Crossref]

J. Appl. Phys. (1)

L. Liu, Z. Li, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-channel composite spoof surface plasmon polaritons propagation along periodically corrugated metallic thin films,” J. Appl. Phys. 116(1), 013501 (2014).
[Crossref]

Laser Photonics Rev. (1)

H. F. Ma, X. P. Shen, Q. Cheng, W. X. Jiang, and T. J. Cui, “Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons,” Laser Photonics Rev. 8(1), 146–151 (2014).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (1)

A. I. Fernández-Dominguez, E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[Crossref]

Phys. Rev. Lett. (3)

S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97(17), 176805 (2006).
[Crossref] [PubMed]

D. Grischkowsky, I. N. Duling, J. C. Chen, and C. Chi, “Electromagnetic shock waves from transmission lines,” Phys. Rev. Lett. 59(15), 1663–1666 (1987).
[Crossref] [PubMed]

C. Fattinger and D. Grischkowsky, “Observation of electromagnetic shock waves from propagating surface-dipole distributions,” Phys. Rev. Lett. 62(25), 2961–2964 (1989).
[Crossref] [PubMed]

Plasmonics (1)

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Gao, L. Zhou, and T. J. Cui, “Odd-Mode Surface Plasmon Polaritons Supported by Complementary Plasmonic Metamaterial,” Sci. Rep. 5, 9250 (2015).
[Crossref] [PubMed]

Science (3)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the plasmonic Y-splitter, and the details of H-shaped structure and composite H-shaped structure. (b) Dispersion relations of the H-shaped structure and composite H-structure, where the red and green solid lines correspond to the H- and composite H-shaped structures, respectively. The dashed black line denotes the light line. (c) The simulated E z distributions of SSPPs waves supported by the composite H-structure at 0.83THz. (d) The simulated E z distributions of the H-shaped structure at 0.83THz.
Fig. 2
Fig. 2 Electric field distributions along the observe line, which is shown by the dashed lines in the inserts, in xy and yz planes, respectively. (a) Field distributions in xy plane. (b) Field distributions in yz plane. The observation frequency is 0.83THz.
Fig. 3
Fig. 3 (a) The simulated E z distributions of Y-splitter at 0.6THz. (b) The simulated E z distributions of Y-splitter at 0.9THz.
Fig. 4
Fig. 4 Transmission spectrum of the Y-splitter. The inset is the physical model used to calculate the transmission spectrum of the Y-splitter.
Fig. 5
Fig. 5 (a) The schematic of THz ultra-wideband power divider. (b) The S parameters of THz ultra-wideband power divider.
Fig. 6
Fig. 6 (a) The photograph of the fabricated 3dB SSPPs power divider in microwave frequency. (b) The simulated and measured S parameters of the 3dB SSPPs power divider

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f 1 ( x ) = C 1 e α 1 x C 2 , ( x 1 < x < x 2 ) f 2 ( x ) = C 3 e α 2 x C 4 , ( x 3 < x < x 4 )
C 1 = y 2 y 1 e α 1 x 2 e α 1 x 1 , C 2 = y 2 e α 1 x 2 y 1 e α 1 x 1 e α 1 x 2 e α 1 x 1

Metrics