Abstract

The authors present the performance and noise properties of a software reconfigurable, FSR and wavelength tunable gain switched optical frequency comb source. This source, based on the external injection of a temperature tuned Fabry-Pérot laser diode, offers quasi-continuous wavelength tunability over the C-band (30nm) and FSR tunability ranging from 6 to 14GHz. The results achieved demonstrate the excellent spectral quality of the comb tones (RIN ~-130dB/Hz and low phase noise of 300kHz) and its outstanding stability (with fluctuations of the individual comb tones of less than 0.5dB in power and 5pm in wavelength, characterized over 24hours) highlighting its suitability for employment in next generation flexible optical transmission networks.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
40nm wavelength tunable gain-switched optical comb source

Rui Zhou, Sylwester Latkowski, John O’Carroll, Richard Phelan, Liam P. Barry, and Prince Anandarajah
Opt. Express 19(26) B415-B420 (2011)

100  km Coherent Nyquist Ultradense Wavelength Division Multiplexed Passive Optical Network Using a Tunable Gain-Switched Comb Source

Tong Shao, Rui Zhou, Vidak Vujicic, M. Deseada Gutierrez Pascual, Prince M. Anandarajah, and Liam P. Barry
J. Opt. Commun. Netw. 8(2) 112-117 (2016)

Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source

Joerg Pfeifle, Vidak Vujicic, Regan T. Watts, Philipp C. Schindler, Claudius Weimann, Rui Zhou, Wolfgang Freude, Liam P. Barry, and Christian Koos
Opt. Express 23(2) 724-738 (2015)

References

  • View by:
  • |
  • |
  • |

  1. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
    [Crossref]
  2. Cisco V. N. I. Forecast, “Cisco visual networking index: forecast and methodology 2013-2018,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .
  3. K. Christodoulopoulos, I. Tomkos, and E. A. I. Varvarigos, “Elastic bandwidth allocation in flexible OFDM-based optical networks,” J. Lightwave Technol. 29(9), 1354–1366 (2011).
    [Crossref]
  4. D. Rafique, T. Rahman, A. Napoli, M. Kuschnerov, G. Lehmann, and B. Spinnler, “Flex-grid optical networks: spectrum allocation and nonlinear dynamics of super-channels,” Opt. Express 21(26), 32184–32191 (2013).
    [Crossref] [PubMed]
  5. G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: how much can gridless help contentionless?” in Optical Fiber Communication Conference and Exposition (OFC, 2011), paper OTuI3.
  6. M. Tornatore, C. Rottondi, A. Morea, and G. Rizzelli, “Complexity and flexible grid networks,” in Optical Fiber Communication Conference and Exposition (OFC, 2014), paper W3A.1.
  7. S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
    [Crossref]
  8. S. Zhang, M. Tornatore, G. Shen, J. Zhang, and B. Mukherjee, “Evolving traffic grooming in multi-layer flexible grid optical networks with software-defined elasticity,” J. Lightwave Technol. 32(16), 2905–2914 (2014).
    [Crossref]
  9. ITU-T Recommendations, “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (2012).
  10. N. Sambo, G. Meloni, F. Paolucci, F. Cugini, M. Secondini, F. Fresi, L. Potì, and P. Castoldi, “Programmable transponder, code and differentiated filter configuration in elastic optical networks,” J. Lightwave Technol. 32(11), 2079–2086 (2014).
    [Crossref]
  11. P. Anandarajah, R. Zhou, R. Maher, M. D. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible optical comb source for super channel systems,” in Optical Fiber Communication Conference and Exposition (OFC, 2013), paper OTh3I.8.
  12. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
    [Crossref]
  13. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
    [Crossref] [PubMed]
  14. V. Vujicic, J. Pfeifle, R. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, C. G. Koos, and L. Barry, “Flexible terabit/s Nyquist-WDM superchannels with net SE > 7bit/s/Hz using a gain-switched comb source,” in CLEO: 2014, OSA Technical Digest (online) (OSA, 2014), paper SW1J.3.
  15. R. Zhou, P. M. Anandarajah, D. Gutierrez Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communication Conference and Exposition (OFC, 2014), paper Th3A.3.
  16. R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
    [Crossref] [PubMed]
  17. M. D. Gutierrez Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Pérot lasers for coherent expansion of wavelength tunable gain switched comb,” in European Conference on Optical Communication (ECOC, 2014), paper Mo.3.4.4.
  18. J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express 19(26), B90–B95 (2011).
    [Crossref] [PubMed]
  19. J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Res. Oceanogr. Abstr. 15(4), 497–503 (1968).
    [Crossref]
  20. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref] [PubMed]
  21. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012).
    [Crossref] [PubMed]
  22. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
    [Crossref]
  23. Newport Corporation application note, “Thermistor calibration and the Steinhart-Hart equation,” http://assets.newport.com/webDocuments-EN/images/AN04_Thermistor_Calibration_IX.PDF
  24. K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
    [Crossref]
  25. T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Asia-Pacific Microwave Photonics Conference (MWP/APMP, 2008), pp. 154–157.
    [Crossref]
  26. Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (OSA, 2008), paper CWN2.
    [Crossref]
  27. X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett. 77(9), 1250–1252 (2000).
    [Crossref]
  28. A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
    [Crossref]
  29. T. N. Huynh, L. Nguyen, and L. Barry, “Phase noise characterization of SGDBR lasers using phase modulation detection method with delayed self-heterodyne measurements,” J. Lightwave Technol. 31(8), 1300–1308 (2013).
    [Crossref]
  30. K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” IEEE Electron. Lett. 23(17), 885–887 (1987).
    [Crossref]

2014 (3)

2013 (4)

T. N. Huynh, L. Nguyen, and L. Barry, “Phase noise characterization of SGDBR lasers using phase modulation detection method with delayed self-heterodyne measurements,” J. Lightwave Technol. 31(8), 1300–1308 (2013).
[Crossref]

D. Rafique, T. Rahman, A. Napoli, M. Kuschnerov, G. Lehmann, and B. Spinnler, “Flex-grid optical networks: spectrum allocation and nonlinear dynamics of super-channels,” Opt. Express 21(26), 32184–32191 (2013).
[Crossref] [PubMed]

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

2012 (3)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
[Crossref]

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

2009 (1)

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

2000 (1)

X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett. 77(9), 1250–1252 (2000).
[Crossref]

1987 (1)

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” IEEE Electron. Lett. 23(17), 885–887 (1987).
[Crossref]

1968 (1)

J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Res. Oceanogr. Abstr. 15(4), 497–503 (1968).
[Crossref]

Akrout, A.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Anandarajah, P.

Anandarajah, P. M.

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Barry, L.

Barry, L. P.

Basch, E. B.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
[Crossref]

Brenot, R.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Byrne, D.

Cai, X.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Castoldi, P.

Christodoulopoulos, K.

Chuang, S. L.

X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett. 77(9), 1250–1252 (2000).
[Crossref]

Cugini, F.

Duan, G.-H.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Fontaine, N. K.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Fresi, F.

Geisler, D. J.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Gringeri, S.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
[Crossref]

Hart, S. R.

J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Res. Oceanogr. Abstr. 15(4), 497–503 (1968).
[Crossref]

Huynh, T. N.

Jin, X.

X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett. 77(9), 1250–1252 (2000).
[Crossref]

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Kelly, B.

Kikuchi, K.

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” IEEE Electron. Lett. 23(17), 885–887 (1987).
[Crossref]

Kuschnerov, M.

Latkowski, S.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Leaird, D. E.

Legouezigou, O.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Lehmann, G.

Lelarge, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Long, C. M.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Maher, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Meloni, G.

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Mukherjee, B.

Murdoch, S. G.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Napoli, A.

Nguyen, L.

O’Carroll, J.

O’Gorman, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. P. Barry, and J. O’Gorman, “Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications,” Opt. Express 19(26), B90–B95 (2011).
[Crossref] [PubMed]

Paolucci, F.

Phelan, R.

Pommereau, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Potì, L.

Proietti, R.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Rafique, D.

Rahman, T.

Ramdane, A.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Sambo, N.

Scott, R. P.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Secondini, M.

Shen, A.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Shen, G.

Spinnler, B.

Steinhart, J. S.

J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Res. Oceanogr. Abstr. 15(4), 497–503 (1968).
[Crossref]

Supradeepa, V. R.

Tomkos, I.

Tornatore, M.

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

Van Dijk, F.

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

Varvarigos, E. A. I.

Vujicic, V.

Weiner, A. M.

Wen, K.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Wu, R.

Xia, T. J.

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
[Crossref]

Xu, Y. Q.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Yin, Y.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

Yoo, S. J. B.

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

Zhang, J.

Zhang, S.

Zhou, R.

Appl. Phys. Lett. (1)

X. Jin and S. L. Chuang, “Relative intensity noise characteristics of injection-locked semiconductor lasers,” Appl. Phys. Lett. 77(9), 1250–1252 (2000).
[Crossref]

Deep Sea Res. Oceanogr. Abstr. (1)

J. S. Steinhart and S. R. Hart, “Calibration curves for thermistors,” Deep Sea Res. Oceanogr. Abstr. 15(4), 497–503 (1968).
[Crossref]

IEEE Commun. Mag. (2)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?” IEEE Commun. Mag. 50(2), 12–20 (2012).
[Crossref]

S. Gringeri, E. B. Basch, and T. J. Xia, “Technical considerations for supporting data rates beyond 100 Gb/s,” IEEE Commun. Mag. 50(2), 21–30 (2012).
[Crossref]

IEEE Electron. Lett. (1)

K. Kikuchi, “Impact of 1/f-type FM noise on coherent optical communications,” IEEE Electron. Lett. 23(17), 885–887 (1987).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

K. Wen, X. Cai, Y. Yin, D. J. Geisler, R. Proietti, R. P. Scott, N. K. Fontaine, and S. J. B. Yoo, “Adaptive spectrum control and management in elastic optical networks,” IEEE J. Sel. Areas Comm. 31(1), 39–48 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 231–236 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Legouezigou, F. Pommereau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a Quantum-Dash-based Mode-Locked laser,” IEEE Photon. Technol. Lett. 21(23), 1746–1748 (2009).
[Crossref]

IEEE Photonics J. (1)

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (4)

Opt. Lett. (2)

Other (11)

Newport Corporation application note, “Thermistor calibration and the Steinhart-Hart equation,” http://assets.newport.com/webDocuments-EN/images/AN04_Thermistor_Calibration_IX.PDF

T. Sakamoto, I. Morohashi, and T. Kawanishi, “Mach-Zehnder-modulator-based flat comb generator with auto bias control,” in Asia-Pacific Microwave Photonics Conference (MWP/APMP, 2008), pp. 154–157.
[Crossref]

Z. Zan, M. Premaratne, and A. J. Lowery, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (OSA, 2008), paper CWN2.
[Crossref]

V. Vujicic, J. Pfeifle, R. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, C. G. Koos, and L. Barry, “Flexible terabit/s Nyquist-WDM superchannels with net SE > 7bit/s/Hz using a gain-switched comb source,” in CLEO: 2014, OSA Technical Digest (online) (OSA, 2014), paper SW1J.3.

R. Zhou, P. M. Anandarajah, D. Gutierrez Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry, “Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” Optical Fiber Communication Conference and Exposition (OFC, 2014), paper Th3A.3.

M. D. Gutierrez Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Pérot lasers for coherent expansion of wavelength tunable gain switched comb,” in European Conference on Optical Communication (ECOC, 2014), paper Mo.3.4.4.

P. Anandarajah, R. Zhou, R. Maher, M. D. Gutierrez Pascual, F. Smyth, V. Vujicic, and L. Barry, “Flexible optical comb source for super channel systems,” in Optical Fiber Communication Conference and Exposition (OFC, 2013), paper OTh3I.8.

G. Shen and Q. Yang, “From coarse grid to mini-grid to gridless: how much can gridless help contentionless?” in Optical Fiber Communication Conference and Exposition (OFC, 2011), paper OTuI3.

M. Tornatore, C. Rottondi, A. Morea, and G. Rizzelli, “Complexity and flexible grid networks,” in Optical Fiber Communication Conference and Exposition (OFC, 2014), paper W3A.1.

ITU-T Recommendations, “Spectral grids for WDM applications: DWDM frequency grid,” G.694.1 (2012).

Cisco V. N. I. Forecast, “Cisco visual networking index: forecast and methodology 2013-2018,” http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Layout of the reconfigurable gain switched OFC source. Insets: (a) Modulation response of FP laser, (b) Spectrum of gain switched FP laser.

Fig. 2
Fig. 2

Reconfigurable gain switched comb generated with different FSRs (a) 6.25 GHz; (b) 12.5 GHz; (c) 8 GHz; (d) 10 GHz (e) 14 GHz.

Fig. 3
Fig. 3

Reconfigurable gain switched comb generated at different operating wavelengths over the C-band: (a) 1535 nm (b) 1550 nm and (c) 1565 nm.

Fig. 4
Fig. 4

Proof-of-concept quasi-continuous wavelength tunability demonstrated around 1550nm.

Fig. 5
Fig. 5

Power stability measurement of the individual comb tones of the 12.5 GHz reconfigurable gain switched comb over a period of 24 hours.

Fig. 6
Fig. 6

Wavelength stability measurement of the individual comb tones of the 12.5 GHz reconfigurable gain switched comb over a period of 24 hours.

Fig. 7
Fig. 7

Measured RIN versus frequency at different operating wavelengths, (a) 1535 nm; (b) 1550 nm; (c) 1565 nm.

Fig. 8
Fig. 8

Measured FM-noise spectrum at different operating wavelengths (a) 1535 nm; (b) 1550 nm; (c) 1565 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 T = A + B ln ( R ) + C ( ln ( R ) ) 3
A = 1 .1253 0 8e-3 B = 2 .347118e-4 C = 8 .566351e-8
R = exp ( y x 2 3 y + x 2 3 )
x = 1 C ( A 1 T ) y = ( B 3 C ) 3 + ( x 2 ) 2

Metrics