Abstract

We present the design of a double-slot photonic crystal cavity as an optomechanical device which contains a nanomechanical resonator with an effective mass as small as 6.91 fg. The optical Q-factor is optimized to 2 × 105. Using phononic crystals, the mechanical vibration is confined in a small volume to form a mechanical mode of 4 GHz with a high mechanical Q-factor and a femtogram effective mass. The localized mechanical mode overlaps with the optical field and strengthens the optomechanical coupling with a vacuum optomechanical coupling rate g0/2π exceeding 600 kHz. Considering fabrication imperfections, structures with deviation from ideal design are studied. The symmetry breakage of the structures and the displacement fields makes the mechanical effective masses reduced and close to 4 fg. The devices can be used in ultrasensitive sensing of mass, force and displacement.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref] [PubMed]
  2. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
    [Crossref] [PubMed]
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
    [Crossref]
  4. Y. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
    [Crossref]
  5. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
    [Crossref]
  6. Y. Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14(10), 105010 (2012).
    [Crossref]
  7. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref] [PubMed]
  8. C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
    [Crossref]
  9. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
    [Crossref] [PubMed]
  10. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
    [Crossref]
  11. A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
    [Crossref]
  12. S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
    [Crossref] [PubMed]
  13. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
    [Crossref] [PubMed]
  14. H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
    [Crossref] [PubMed]
  15. E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
    [Crossref] [PubMed]
  16. J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
    [Crossref] [PubMed]
  17. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
    [Crossref] [PubMed]
  18. O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
    [Crossref] [PubMed]
  19. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
    [Crossref] [PubMed]
  20. K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
    [Crossref]
  21. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
    [Crossref] [PubMed]
  22. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
    [Crossref] [PubMed]
  23. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [Crossref] [PubMed]
  24. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
    [Crossref] [PubMed]
  25. J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
    [Crossref]
  26. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
    [Crossref] [PubMed]
  27. A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
    [Crossref]
  28. Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
    [Crossref] [PubMed]
  29. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
    [Crossref] [PubMed]
  30. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [Crossref]
  31. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [Crossref]
  32. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [Crossref] [PubMed]
  33. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
    [Crossref]
  34. C. Schriever, C. Bohley, and J. Schilling, “Designing the quality factor of infiltrated photonic wire slot microcavities,” Opt. Express 18(24), 25217–25224 (2010).
    [Crossref] [PubMed]
  35. J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
    [Crossref] [PubMed]
  36. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
    [Crossref]
  37. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
    [Crossref]
  38. M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
    [Crossref]

2015 (1)

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

2014 (5)

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

2013 (1)

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

2012 (9)

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Y. Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14(10), 105010 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

2011 (1)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

2010 (5)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

C. Schriever, C. Bohley, and J. Schilling, “Designing the quality factor of infiltrated photonic wire slot microcavities,” Opt. Express 18(24), 25217–25224 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

2009 (4)

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Y. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

2008 (4)

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
[Crossref] [PubMed]

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

2007 (1)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

2006 (3)

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

2005 (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

2004 (2)

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Almeida, V. R.

Alzina, F.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Andrews, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Anetsberger, G.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Aras, M. S.

Arcizet, O.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Asano, T.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Assefa, S.

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Bachtold, A.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Barrios, C. A.

Basarir, O.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Bockrath, M.

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Bohley, C.

Bowen, W. P.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Bramhavar, S.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Brawley, G. A.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

Camacho, R.

Camacho, R. M.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Castellanos-Beltran, M. A.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Chan, J.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[Crossref] [PubMed]

Chavez, E.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Chiu, H. Y.

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Cicak, K.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Clerk, A. A.

Y. Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14(10), 105010 (2012).
[Crossref]

Dadgar, A.

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Djafari-Rouhani, B.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Dong, C.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Donner, T.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Dykman, M. I.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Eichenfield, M.

Eichler, A.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Ekinci, K. L.

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
[Crossref]

El-Jallal, S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Esplandiu, M. J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Feng, X. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

Fiore, V.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Forstner, S.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Gao, J.

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

Gavartin, E.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Gomis-Bresco, J.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Gorodetsky, M. L.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Griol, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Güttinger, J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Harlow, J. W.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Hill, J. T.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Hugonin, J. P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

Humphreys, C. L.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Hung, P.

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Knittel, J.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Kotthaus, J. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Kuga, T.

Kuramochi, E.

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Kuzyk, M. C.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Lalanne, P.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

Lehnert, K. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Li, M.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Li, Y.

Lin, Q.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Lipson, M.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[Crossref] [PubMed]

Liu, D. E.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Luiz, G.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Martínez, A.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

McMillan, J. F.

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Meenehan, S.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Moser, J.

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

Navarro-Urrios, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Noda, S.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Nooshi, N.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Notomi, M.

T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Oudich, M.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Painter, O.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express 17(5), 3802–3817 (2009).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Park, Y.

Y. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Pennec, Y.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Pernice, W. H. P.

Peterson, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Poot, M.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

Postma, H. W. C.

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

Puerto, D.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Purdy, T. P.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Regal, C. A.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Rivière, R.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Roukes, M. L.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
[Crossref]

Rubinsztein-Dunlop, H.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Sauvan, C.

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

Schilling, J.

Schliesser, A.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Schriever, C.

Shah, S.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

Sheridan, E.

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Shi, N. N.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Shu, J.

Simmonds, R. W.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

Sun, X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Tang, H. X.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Taniyama, H.

Teufel, J. D.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Tian, L.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Torii, Y.

Torres, C. M. S.

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Unterreithmeier, Q. P.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Vahala, K. J.

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

Verlot, P.

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

Wang, H.

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Y. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Wang, Y.

Y. Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14(10), 105010 (2012).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

Weig, E. M.

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Wiederhecker, G.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

Wong, C. W.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

Wu, M.

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Xu, Q.

Yamamoto, T.

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
[Crossref]

Yoshikawa, Y.

Zhang, M.

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

Zheng, J.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20(24), 26486–26498 (2012).
[Crossref] [PubMed]

Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, “Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities,” Opt. Express 18(23), 23844–23856 (2010).
[Crossref] [PubMed]

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

Adv. Mater. (1)

S. Forstner, E. Sheridan, J. Knittel, C. L. Humphreys, G. A. Brawley, H. Rubinsztein-Dunlop, and W. P. Bowen, “Ultrasensitive optomechanical magnetometry,” Adv. Mater. 26(36), 6348–6353 (2014).
[Crossref] [PubMed]

Ann. Phys. (1)

C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Appl. Phys. Lett. (5)

J. Gao, J. F. McMillan, M. Wu, J. Zheng, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96(5), 051123 (2010).
[Crossref]

A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O. Painter, “Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 97(18), 181106 (2010).
[Crossref]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[Crossref]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett. 101(8), 081115 (2012).
[Crossref]

M. Zhang, G. Luiz, S. Shah, G. Wiederhecker, and M. Lipson, “Eliminating anchor loss in optomechanical resonators using elastic wave interference,” Appl. Phys. Lett. 105(5), 051904 (2014).
[Crossref]

J. Appl. Phys. (1)

K. L. Ekinci, Y. T. Yang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95(5), 2682 (2004).
[Crossref]

Laser Photonics Rev. (1)

P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008).
[Crossref]

Nano Lett. (4)

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12(5), 2299–2305 (2012).
[Crossref] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[Crossref] [PubMed]

H. Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath, “Atomic-scale mass sensing using carbon nanotube resonators,” Nano Lett. 8(12), 4342–4346 (2008).
[Crossref] [PubMed]

O. Basarir, S. Bramhavar, and K. L. Ekinci, “Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling,” Nano Lett. 12(2), 534–539 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, and C. M. S. Torres, “A one-dimensional optomechanical crystal with a complete phononic band gap,” Nat. Commun. 5, 4452 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[Crossref]

Nat. Nanotechnol. (4)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

E. Gavartin, P. Verlot, and T. J. Kippenberg, “A hybrid on-chip optomechanical transducer for ultrasensitive force measurements,” Nat. Nanotechnol. 7(8), 509–514 (2012).
[Crossref] [PubMed]

J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and A. Bachtold, “Ultrasensitive force detection with a nanotube mechanical resonator,” Nat. Nanotechnol. 8(7), 493–496 (2013).
[Crossref] [PubMed]

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nat. Nanotechnol. 4(12), 820–823 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6(11), 768–772 (2012).
[Crossref]

Nat. Phys. (3)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4(5), 415–419 (2008).
[Crossref]

Y. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nat. Phys. 10(4), 321–326 (2014).
[Crossref]

Nature (3)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009).
[Crossref] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

Y. Wang and A. A. Clerk, “Using dark modes for high-fidelity optomechanical quantum state transfer,” New J. Phys. 14(10), 105010 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, “Measuring nanomechanical motion with an imprecision below the standard quantum limit,” Phys. Rev. A 82(6), 061804 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(4), 1391–1452 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Geometry of the double-slot PhC waveguide. A unit cell is indicated by dashed white lines. (b) TE-like optical band diagram of (a). Three waveguide modes in the bandgap are shown. The light and dark gray shades represent the continua of the guided and radiant modes respectively. (c) The normalized Ey field of the three waveguide modes at the bandedge (kx = 0.5 × 2π/a) indicated by circles with corresponding colors in (b). (d) The bandedge frequencies of the waveguide modes versus a of unit cells. When a decreases, hy of unit cells increases linearly at the same time. The leftmost and rightmost frequencies in the diagram correspond to the normal and defect unit cells. The horizontal dashed red line shows that the bandedge frequency of Mode C in the defect unit cell is between Mode B and C of the normal unit cell.

Fig. 2
Fig. 2

(a) Geometry of the double-slot PhC multistep double-heterostructure cavity. The defect, transitional and normal unit cells are indicated. The two slots are labeled as “Slot1” and “Slot2.” (b) The normalized Ey field of the optical mode.

Fig. 3
Fig. 3

(a) The normalized displacement field of the flexural mechanical mode at kx = 0 [indicated by a red circle in (b)] for a normal unit cell. (b) In-plane acoustic band diagram of the 1D phononic crystals in the nanobeam. Modes of y- and z-symmetries (red bands), and modes of other symmetries (blue bands) are shown. The gray shade represents the acoustic quasi-complete bandgap for the red bands. The normalized displacement fields of the two blue bands across the bandgap at the same frequency with the flexural mechanical mode of the defect unit cell (indicated with blue filled circles) are shown to the right of the band diagram. (c) The frequency fm of the flexural mechanical mode at kx = 0 and the bandgap versus a and hy of unit cells. The leftmost and rightmost frequencies in the diagram correspond to the normal and defect unit cells. The horizontal dashed red line shows that the frequency at kx = 0 of the flexural mechanical mode in the defect unit cell falls in the bandgap of the normal unit cells.

Fig. 4
Fig. 4

(a) The normalized displacement field of the flexural mechanical mode confined in the center of the nanobeam. Close-up view of the flexural mechanical mode is also shown. (b) The simulated clamping-loss-limited mechanical Q-factor Qm and frequency fm as a function of the hy of the normal unit cells.

Fig. 5
Fig. 5

Schematics of the ideal design and imperfect cavities. The widths of the two slots and the two rails of the central defect unit cell are shown with red and blue arrows respectively. The variations in structures of the imperfect cavities are exaggerated for clarity.

Fig. 6
Fig. 6

The normalized displacement fields of the flexural mechanical modes of the ideal design and imperfect cavities. (a) Ideal design. (b) ESW5nm. (c) ESW10nm. (d) SSP5nm. (e) SSP-5nm. (f) SRP-2.5nm. The corresponding effective masses are also shown.

Tables (1)

Tables Icon

Table 1 Optical and mechanical properties of the ideal design and imperfect cavities

Metrics