Abstract

All-optical 2R regeneration of 100-Gb/s on-off-keying (OOK) signal is experimentally demonstrated based on cross gain compression (XGC) effect in semiconductor optical amplifiers (SOAs). It is shown that a high-quality logic-inverted signal and SOAs with faster gain recovery times are the two key enabling factors for obtaining regeneration results at such speeds. BER improvement of 1.2~2 dB is experimentally obtained at 1551 nm and regenerative results are demonstrated on a wide wavelength range from 1535 nm to 1555 nm. The tolerance of the input signal to optical signal-to-noise ratio (OSNR) deterioration is also experimentally studied for the 2R regeneration scheme at two different wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascadability properties of MZI-SOA-based all-optical 3R regenerators for RZ-DPSK signals

Tomofumi Kise, Kimchau N. Nguyen, John M. Garcia, Henrik N. Poulsen, and Daniel J. Blumenthal
Opt. Express 19(10) 9330-9335 (2011)

Ultrafast gain recovery in a QW-SOA and its application for 40  Gb/s regenerative format conversion from NRZ-DPSK to RZ-OOK

Tong Cao, Liao Chen, Yu Yu, and Xinliang Zhang
J. Opt. Soc. Am. B 33(6) 1291-1297 (2016)

Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs

Tong Cao, Liao Chen, Yu Yu, and Xinliang Zhang
Opt. Express 22(26) 32138-32149 (2014)

References

  • View by:
  • |
  • |
  • |

  1. O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, L. Pierre, D. Rouvillain, and F. Seguineau, “Optical regeneration at 40 Gb/s and beyond,” J. Lightwave Technol. 21(11), 2779–2790 (2003).
    [Crossref]
  2. P. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication (1998), pp. 475–476.
    [Crossref]
  3. T. Otani, T. Miyazaki, and S. Yamamoto, “40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks,” J. Lightwave Technol. 20(2), 195–200 (2002).
    [Crossref]
  4. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
    [Crossref]
  5. A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
    [Crossref]
  6. C. S. Cleary, M. J. Power, S. Schneider, R. P. Webb, and R. J. Manning, “Fast gain recovery rates with strong wavelength dependence in a non-linear SOA,” Opt. Express 18(25), 25726–25737 (2010).
    [Crossref] [PubMed]
  7. T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
    [Crossref]
  8. J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
    [Crossref]
  9. H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
    [Crossref]
  10. Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
    [Crossref]
  11. J. Slovak, C. Bornholdt, U. Busolt, G. Bramann, C. Schmidt, H. Ehlers, H.-P. Nolting, and B. Sartorius, “Optically clocked ultra long SOAs: A novel technique for high speed 3R signal regeneration,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. WD4.
  12. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification in a quantum dot SOA,” in Optical Fiber Communication Conference (Optical Society of America, 2010), p. OMT2.
    [Crossref]
  13. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “All optical regeneration by cross gain compression in semiconductor amplifiers,” in Optical Communication,2005. ECOC 2005. 31st European Conference on(IET, 2005), pp. 415–416.
    [Crossref]
  14. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [Crossref] [PubMed]
  15. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
    [Crossref]
  16. G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
    [Crossref]
  17. Y. Liu, E. Tangdiongga, Z. Li, H. De Waardt, A. Koonen, G. Khoe, X. Shu, I. Bennion, and H. Dorren, “Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier,” J. Lightwave Technol. 25(1), 103–108 (2007).
    [Crossref]
  18. L. Huo, H. Li, D. Wang, Q. Wang, and C. Lou, “Multiwavelength 25-GHz picosecond pulse generation with phase modulation and double-side Mamyshev reshaping,” Appl. Opt. 54(18), 5703–5707 (2015).
    [Crossref] [PubMed]
  19. G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
    [Crossref]
  20. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]
  21. K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” in Semiconductor Laser Conference,2000. Conference Digest. 2000 IEEE 17th International (IEEE, 2000), pp. 73–74.
    [Crossref]
  22. L. Huo, Y. Yang, Y. Nan, C. Lou, and Y. Gao, “A study on the wavelength conversion and all-optical 3R regeneration using cross-absorption modulation in a bulk electroabsorption modulator,” J. Lightwave Technol. 24(8), 3035–3044 (2006).
    [Crossref]

2015 (1)

2013 (1)

2010 (1)

2007 (2)

2006 (1)

2005 (1)

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

2004 (1)

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

2003 (1)

2002 (2)

T. Otani, T. Miyazaki, and S. Yamamoto, “40-Gb/s optical 3R regenerator using electroabsorption modulators for optical networks,” J. Lightwave Technol. 20(2), 195–200 (2002).
[Crossref]

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

2001 (1)

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
[Crossref]

2000 (1)

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

1999 (1)

H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
[Crossref]

1994 (1)

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Andriolli, N.

Balmefrezol, E.

Bennion, I.

Bogoni, A.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

Bontempi, F.

Brindel, P.

Cabot, S.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Calabretta, N.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

Ciaramella, E.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
[Crossref]

Cleary, C. S.

Contestabile, G.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
[Crossref]

Dagens, B.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

De Waardt, H.

Dorren, H.

Durhuus, T.

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

Ellis, A.

H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
[Crossref]

Essiambre, R.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Faralli, S.

Fjelde, T.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

Gao, Y.

Ghelfi, P.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

Huo, L.

Janz, C.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

Jaques, J.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Joergensen, C.

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

Kauer, M.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Khoe, G.

Kloch, A.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

Koonen, A.

Lavigne, B.

Leclerc, O.

Leuthold, J.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Li, H.

Li, Z.

Liu, Y.

Lou, C.

Manning, R. J.

Mikkelsen, B.

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

Miyazaki, T.

Nakamura, S.

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
[Crossref]

Nan, Y.

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Otani, T.

Pedersen, R. J. S.

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

Phillips, I.

H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
[Crossref]

Pierre, L.

Potì, L.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

Power, M. J.

Presi, M.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
[Crossref]

Proietti, R.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
[Crossref]

Raybon, G.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Renaud, M.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

Rouvillain, D.

Scaffardi, M.

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

Schneider, S.

Seguineau, F.

Shu, X.

Stubkjær, K.

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

Su, Y.

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

Tajima, K.

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
[Crossref]

Tangdiongga, E.

Thiele, H.

H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
[Crossref]

Ueno, Y.

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
[Crossref]

Wang, D.

Wang, Q.

Webb, R. P.

Wolfson, D.

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

Yamamoto, S.

Yang, Y.

Appl. Opt. (1)

Electron. Lett. (2)

J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1 000 000 km,” Electron. Lett. 38(16), 890–892 (2002).
[Crossref]

H. Thiele, A. Ellis, and I. Phillips, “Recirculating loop demonstration of 40 Gbit/s all-optical 3R data regeneration using a semiconductor nonlinear interferometer,” Electron. Lett. 35(3), 230–231 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bogoni, P. Ghelfi, M. Scaffardi, and L. Potì, “All-optical regeneration and demultiplexing for 160-Gb/s transmission systems using a NOLM-based three-stage scheme,” IEEE J. Sel. Top. Quantum Electron. 10(1), 192–196 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, and K. Stubkjær, “All optical wavelength conversion by SOA’s in a Mach-Zehnder configuration,” IEEE Photonics Technol. Lett. 6(1), 53–55 (1994).
[Crossref]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photonics Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator,” IEEE Photonics Technol. Lett. 13(5), 469–471 (2001).
[Crossref]

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 12(3), 332–334 (2000).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (2)

Other (6)

G. Contestabile, R. Proietti, M. Presi, and E. Ciaramella, “40 Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals,” in Optical Fiber Communication Conference (OSA, 2008), p. OWK1.
[Crossref]

P. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication (1998), pp. 475–476.
[Crossref]

J. Slovak, C. Bornholdt, U. Busolt, G. Bramann, C. Schmidt, H. Ehlers, H.-P. Nolting, and B. Sartorius, “Optically clocked ultra long SOAs: A novel technique for high speed 3R signal regeneration,” in Optical Fiber Communication Conference (Optical Society of America, 2004), p. WD4.

G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “Regenerative amplification in a quantum dot SOA,” in Optical Fiber Communication Conference (Optical Society of America, 2010), p. OMT2.
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “All optical regeneration by cross gain compression in semiconductor amplifiers,” in Optical Communication,2005. ECOC 2005. 31st European Conference on(IET, 2005), pp. 415–416.
[Crossref]

K. Sato and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” in Semiconductor Laser Conference,2000. Conference Digest. 2000 IEEE 17th International (IEEE, 2000), pp. 73–74.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of the 100-Gb/s 2R regeneration based on XGC.
Fig. 2
Fig. 2 Eye diagrams of (a) the original 100-Gb/s OOK signal and (b) the degraded 100-Gb/s OOK signal; (c) optical spectra at the input and output of SOA1; eye diagrams of signals (d) at output of SOA1 and (e) 100-Gb/s regenerated signal; (f) BER curves for the degraded and regenerated signals measured after OTDM de-multiplexing (Re. stands for regenerated signal and De. stands for degraded signal).
Fig. 3
Fig. 3 Eye diagrams of logic-inverted signals by detuning the OBPF at different offset with respect to the center wavelength of the CW light (a) 1.2-nm blue-shifted (b) 0.72-nm blue-shifted (c) 0.36-nm blue-shifted (d) zero shift (e) 0.36-nm red-shifted.
Fig. 4
Fig. 4 Eye diagrams and Q factors of regenerative signals using logic-inverted signals filtered out by OBPF1 whose center wavelengths are (a) blue-shifted 1.2 nm (b) blue-shifted 0.72 nm (c) blue-shifted 0.36 nm (d) not shifted (e) red-shifted 0.36 nm, from the CW wavelength respectively.
Fig. 5
Fig. 5 Eye diagrams of logic-inverted signals and regenerated signal by tuning the PCs in front of SOA1 (a) logic-inverted signal of the worst quality, (b) logic-inverted signal of the best quality, (c) regenerated signal of the worst quality, (d) regenerated signal of the best quality.
Fig. 6
Fig. 6 BER measurements of degraded signal, regenerated signal using 0.8-mm SOA, 2-mm SOA and the cascaded 0.8-mm and 2-mm SOAs.
Fig. 7
Fig. 7 Q factors of degraded signals and regenerated signals and their improvements at different wavelengths from 1535 nm to 1555 nm.
Fig. 8
Fig. 8 BER performance comparison of different CW wavelength allocation.
Fig. 9
Fig. 9 Q factor of the regenerated signal as a function of input Q factor at wavelengths of 1546 nm (a) and 1551 nm (b), dotted-line is a reference on which output Q value is equal to input Q value.

Metrics