R. Porras-Aguilar, M. Kujawinska, and W. Zaperty, “Capture and display mismatch compensation for real-time digital holographic interferometry,” Appl. Opt. 53(13), 2870–2880 (2014).

[Crossref]
[PubMed]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” Proc. SPIE 9271, 927128 (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

M. H. Jenkins, J. M. Long, and T. K. Gaylord, “Multifilter phase imaging with partially coherent light,” Appl. Opt. 53(16), D29–D39 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum plane selection for transport-of-intensity-equation-based solvers,” Appl. Opt. 53(30), 7050–7058 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[PubMed]

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21(12), 14430–14441 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).

[Crossref]
[PubMed]

E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal recovery from magnitude measurements via convex programming,” Commun. Pure Appl. Math. 66(8), 1241–1274 (2013).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies,” Opt. Lett. 38(10), 1660–1662 (2013).

[Crossref]
[PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).

[Crossref]
[PubMed]

R. Bie, X.-H. Yuan, M. Zhao, and L. Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express 20(7), 8186–8191 (2012).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

P. Langehanenberg, G. Von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res. 01, 1–11 (2011).

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys. 52(1), 55–69 (2011).

[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19(9), 2428–2436 (2010).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. 11, 54008A (2009).

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A Phase odyssey,” Phys. Today 54(8), 27–32 (2001).

[Crossref]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).

[Crossref]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).

[Crossref]
[PubMed]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” Proc. SPIE 9271, 927128 (2014).

[Crossref]

J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21(12), 14430–14441 (2013).

[Crossref]
[PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal recovery from magnitude measurements via convex programming,” Commun. Pure Appl. Math. 66(8), 1241–1274 (2013).

[Crossref]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).

[Crossref]
[PubMed]

M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19(9), 2428–2436 (2010).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum plane selection for transport-of-intensity-equation-based solvers,” Appl. Opt. 53(30), 7050–7058 (2014).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies,” Opt. Lett. 38(10), 1660–1662 (2013).

[Crossref]
[PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. 11, 54008A (2009).

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A Phase odyssey,” Phys. Today 54(8), 27–32 (2001).

[Crossref]

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum plane selection for transport-of-intensity-equation-based solvers,” Appl. Opt. 53(30), 7050–7058 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies,” Opt. Lett. 38(10), 1660–1662 (2013).

[Crossref]
[PubMed]

R. Porras-Aguilar, M. Kujawinska, and W. Zaperty, “Capture and display mismatch compensation for real-time digital holographic interferometry,” Appl. Opt. 53(13), 2870–2880 (2014).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies,” Opt. Lett. 38(10), 1660–1662 (2013).

[Crossref]
[PubMed]

P. Langehanenberg, G. Von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res. 01, 1–11 (2011).

M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19(9), 2428–2436 (2010).

[Crossref]
[PubMed]

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum plane selection for transport-of-intensity-equation-based solvers,” Appl. Opt. 53(30), 7050–7058 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys. 52(1), 55–69 (2011).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A Phase odyssey,” Phys. Today 54(8), 27–32 (2001).

[Crossref]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A Phase odyssey,” Phys. Today 54(8), 27–32 (2001).

[Crossref]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” Proc. SPIE 9271, 927128 (2014).

[Crossref]

J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21(12), 14430–14441 (2013).

[Crossref]
[PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).

[Crossref]
[PubMed]

M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19(9), 2428–2436 (2010).

[Crossref]
[PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” Proc. SPIE 9271, 927128 (2014).

[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).

[Crossref]

E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal recovery from magnitude measurements via convex programming,” Commun. Pure Appl. Math. 66(8), 1241–1274 (2013).

[Crossref]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21(12), 14430–14441 (2013).

[Crossref]
[PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. 11, 54008A (2009).

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. 11, 54008A (2009).

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal recovery from magnitude measurements via convex programming,” Commun. Pure Appl. Math. 66(8), 1241–1274 (2013).

[Crossref]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

P. Langehanenberg, G. Von Bally, and B. Kemper, “Autofocusing in digital holographic microscopy,” 3D Res. 01, 1–11 (2011).

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).

[Crossref]
[PubMed]

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47(4), A52–A61 (2008).

[Crossref]
[PubMed]

F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt. 29(10), 1402–1403 (1990).

[Crossref]
[PubMed]

R. Porras-Aguilar, M. Kujawinska, and W. Zaperty, “Capture and display mismatch compensation for real-time digital holographic interferometry,” Appl. Opt. 53(13), 2870–2880 (2014).

[Crossref]
[PubMed]

M. H. Jenkins, J. M. Long, and T. K. Gaylord, “Multifilter phase imaging with partially coherent light,” Appl. Opt. 53(16), D29–D39 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum plane selection for transport-of-intensity-equation-based solvers,” Appl. Opt. 53(30), 7050–7058 (2014).

[Crossref]
[PubMed]

A. Shanker, L. Tian, M. Sczyrba, B. Connolly, A. Neureuther, and L. Waller, “Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks,” Appl. Opt. 53(34), J1–J6 (2014).

[PubMed]

E. J. Candès, T. Strohmer, and V. Voroninski, “Phaselift: exact and stable signal recovery from magnitude measurements via convex programming,” Commun. Pure Appl. Math. 66(8), 1241–1274 (2013).

[Crossref]

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys. 52(1), 55–69 (2011).

[Crossref]

M. Langer, P. Cloetens, and F. Peyrin, “Regularization of phase retrieval with phase-attenuation duality prior for 3-D holotomography,” IEEE Trans. Image Process. 19(9), 2428–2436 (2010).

[Crossref]
[PubMed]

D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, “Quantitative phase-amplitude microscopy. III. The effects of noise,” J. Microsc. 214(1), 51–61 (2004).

[Crossref]
[PubMed]

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. 11, 54008A (2009).

C. T. Koch, “Towards full-resolution inline electron holography,” Micron 63, 69–75 (2014).

[Crossref]
[PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).

[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49(1), 6–10 (1984).

[Crossref]

C. Zuo, Q. Chen, L. Huang, and A. Asundi, “Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation,” Opt. Express 22(14), 17172–17186 (2014).

[Crossref]
[PubMed]

Z. Jingshan, R. A. Claus, J. Dauwels, L. Tian, and L. Waller, “Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes,” Opt. Express 22(9), 10661–10674 (2014).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).

[Crossref]
[PubMed]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).

[Crossref]
[PubMed]

R. Bie, X.-H. Yuan, M. Zhao, and L. Zhang, “Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression,” Opt. Express 20(7), 8186–8191 (2012).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter--theory and applications,” Opt. Express 21(5), 5346–5362 (2013).

[Crossref]
[PubMed]

J. C. Petruccelli, L. Tian, and G. Barbastathis, “The transport of intensity equation for optical path length recovery using partially coherent illumination,” Opt. Express 21(12), 14430–14441 (2013).

[Crossref]
[PubMed]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “Noninterferometric single-shot quantitative phase microscopy,” Opt. Lett. 38(18), 3538–3541 (2013).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Accelerated single-beam wavefront reconstruction techniques based on relaxation and multiresolution strategies,” Opt. Lett. 38(10), 1660–1662 (2013).

[Crossref]
[PubMed]

L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).

[Crossref]
[PubMed]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function,” Opt. Lett. 39(1), 30–33 (2014).

[Crossref]
[PubMed]

J. Martinez-Carranza, K. Falaggis, and T. Kozacki, “Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers,” Opt. Lett. 39(2), 182–185 (2014).

[Crossref]
[PubMed]

J. A. Schmalz, T. E. Gureyev, D. M. Paganin, and K. M. Pavlov, “Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the transport-of-intensity equation,” Phys. Rev. A 84(2), 023808 (2011).

[Crossref]

D. Paganin and K. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80(12), 2586–2589 (1998).

[Crossref]

A. Lubk, G. Guzzinati, F. Börrnert, and J. Verbeeck, “Transport of intensity phase retrieval of arbitrary wave fields including vortices,” Phys. Rev. Lett. 111(17), 173902 (2013).

[Crossref]
[PubMed]

K. A. Nugent, D. Paganin, and T. E. Gureyev, “A Phase odyssey,” Phys. Today 54(8), 27–32 (2001).

[Crossref]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” Proc. SPIE 9271, 927128 (2014).

[Crossref]

J. Martinez-Carranza, K. Falaggis, M. Jozwik, and T. Kozacki, “Comparison of phase retrieval techniques based on the transport of intensity equation using equally and unequally spaced plane separation criteria,” Proc. SPIE 9204, 92040G (2014).

[Crossref]

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev. 1, 018005 (2010).