Abstract

We propose a spectral domain optical coherence tomography (SD-OCT) system that uses a single line-scan detection scheme for balanced detection. Two phase-opposed spectra, generated by two optical fiber couplers, were detected by using a spectrometer with fast optical switching. A 2.69 km optical fiber was introduced to provide a proper time delay to prevent phase errors caused by the difference in measurement time between the two opposing spectra and unstable output voltages for controlling the galvano-scanner. Hence, a phase difference of π was obtained between the spectra over the sample depth without a phase error, which improved sensitivity by approximately 6 dB compared to that of conventional SD-OCT. We directly showed and compared the OCT images before and after applying the proposed balanced detection method in a phantom and in vivo sample.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging

Hyun-Woo Jeong, Sang-Won Lee, and Beop-Min Kim
Opt. Express 20(17) 19148-19159 (2012)

Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source

Sucbei Moon and Dug Young Kim
Opt. Express 14(24) 11575-11584 (2006)

Fourier domain optical coherence tomography system with balance detection

Adrian Bradu and Adrian Gh. Podoleanu
Opt. Express 20(16) 17522-17538 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [Crossref] [PubMed]
  3. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39(1), 173–182 (2000).
    [Crossref] [PubMed]
  4. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999).
    [Crossref] [PubMed]
  5. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
    [Crossref]
  6. A. Bradu and A. G. Podoleanu, “Fourier domain optical coherence tomography system with balance detection,” Opt. Express 20(16), 17522–17538 (2012).
    [Crossref] [PubMed]
  7. W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
    [Crossref] [PubMed]
  8. W.-C. Kuo, Y.-S. Lai, C.-M. Lai, and Y.-S. Huang, “Balanced detection spectral domain optical coherence tomography with a multiline single camera for signal-to-noise ratio enhancement,” Appl. Opt. 51(24), 5936–5940 (2012).
    [Crossref] [PubMed]
  9. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett. 33(22), 2632–2634 (2008).
    [Crossref] [PubMed]
  10. S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
    [Crossref] [PubMed]
  11. K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
    [Crossref] [PubMed]
  12. J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
    [Crossref]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  14. D. Nankivil, A.-H. Dhalla, N. Gahm, K. Shia, S. Farsiu, and J. A. Izatt, “Coherence revival multiplexed, buffered swept source optical coherence tomography: 400 kHz imaging with a 100 kHz source,” Opt. Lett. 39(13), 3740–3743 (2014).
    [Crossref] [PubMed]
  15. A.-H. Dhalla, K. Shia, and J. A. Izatt, “Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch,” Biomed. Opt. Express 3(12), 3054–3066 (2012).
    [Crossref] [PubMed]
  16. J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett. 36(24), 4788–4790 (2011).
    [Crossref] [PubMed]
  17. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [Crossref] [PubMed]
  18. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, “Spectrally balanced detection for optical frequency domain imaging,” Opt. Express 15(25), 16390–16399 (2007).
    [Crossref] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15(20), 13375–13387 (2007).
    [Crossref] [PubMed]
  20. H.-W. Jeong, J.-G. Lim, H.-J. Kim, W. Chung, and B.-M. Kim, “Complex artifact suppression using vestigial sideband filter in Fourier-domain optical coherence tomography,” Opt. Lett. 37(23), 4859–4861 (2012).
    [Crossref] [PubMed]
  21. American National Standard for Safe Use of Lasers ANSI Z136, 1–2007 (American National Standards Institute, Inc., 2007)
  22. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
    [Crossref] [PubMed]
  23. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
    [Crossref] [PubMed]
  24. Halina Abramczyk, “Dispersion phenomena in optical fibers,” http://www.mitr.p.lodz.pl/evu/wyklady/ .
  25. Corning® SMF-28® Optical Fiber, http://course.ee.ust.hk/elec342/readings/corning%20smf-28.pdf .

2014 (1)

2013 (2)

W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express 21(16), 19280–19291 (2013).
[Crossref] [PubMed]

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (1)

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (4)

2006 (2)

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

2003 (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

2000 (1)

1999 (1)

1998 (1)

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ai, J.

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

Baumann, B.

Bradu, A.

Chang, C.-Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Choi, W. J.

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

Chung, W.

de Boer, J. F.

de Bruin, D. M.

Dhalla, A.-H.

Eom, T. J.

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

Et, A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Farsiu, S.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gahm, N.

Gora, M.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, Y.-S.

Huber, R.

Izatt, J. A.

Jeong, H.-W.

H.-W. Jeong, J.-G. Lim, H.-J. Kim, W. Chung, and B.-M. Kim, “Complex artifact suppression using vestigial sideband filter in Fourier-domain optical coherence tomography,” Opt. Lett. 37(23), 4859–4861 (2012).
[Crossref] [PubMed]

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref] [PubMed]

Jing, J.

Kaluzny, B. J.

Karnowski, K.

Kerbage, C.

Kim, B.-M.

H.-W. Jeong, J.-G. Lim, H.-J. Kim, W. Chung, and B.-M. Kim, “Complex artifact suppression using vestigial sideband filter in Fourier-domain optical coherence tomography,” Opt. Lett. 37(23), 4859–4861 (2012).
[Crossref] [PubMed]

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref] [PubMed]

Kim, H.-J.

Kowalczyk, A.

Kuo, W.-C.

Kuo, Y.-M.

Lai, C.-M.

Lai, Y.-S.

Lasser, T.

Lee, B. H.

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

Lee, S.-W.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref] [PubMed]

Leitgeb, R. A.

Lim, J.-G.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Michaely, R.

Nankivil, D.

Pan, Y.

Park, K. S.

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

Pircher, M.

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rollins, A. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sekhar, S. C.

Shia, K.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowski, M.

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

Wang, H.

Wang, L. V.

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

Wang, P.

Wang, R. K.

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

Wojtkowski, M.

Zhang, J.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Ai and L. V. Wang, “Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch,” Appl. Phys. Lett. 88(11), 111115 (2006).
[Crossref]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90(5), 054103 (2007).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34(7), 1098–1108 (1998).
[Crossref]

J. Biomed. Opt. (2)

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[Crossref] [PubMed]

K. S. Park, W. J. Choi, T. J. Eom, and B. H. Lee, “Single-camera polarization-sensitive full-field optical coherence tomography with polarization switch,” J. Biomed. Opt. 18(10), 100504 (2013).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and A. Et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

American National Standard for Safe Use of Lasers ANSI Z136, 1–2007 (American National Standards Institute, Inc., 2007)

Halina Abramczyk, “Dispersion phenomena in optical fibers,” http://www.mitr.p.lodz.pl/evu/wyklady/ .

Corning® SMF-28® Optical Fiber, http://course.ee.ust.hk/elec342/readings/corning%20smf-28.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the balanced SD-OCT system using a single camera and a time delay. SLD: superluminescent diode, FC1: 90/10 fiber coupler, FC2: 50/50 fiber coupler, C: circulator, PC1-4: polarization controller, OS: optical switch, DL: delay line, GS: galvano scanner, M: mirror CL: collimation lens, L: lens, NDF: neutral density filter, OL: objective lens. Signal flow in the red box will be explained in Fig. 3.
Fig. 2
Fig. 2 (a) Timing diagram of synchronization of the camera with the optical switch and the galvano-scanner. (b) Unexpected OPD generation due to unstable DAQ analog output signal during signal acquisition. The galvano-scanner position at times t1 and t2 are ideally the same.
Fig. 3
Fig. 3 (a) Propagation of interference signals according to the optical switch with no time delay. (b) Propagation of interference signals according to the optical switch with time delay. (c) A table shows obtained spectra according to BD with and without DL. OS: optical switch, FC: fiber coupler, PC: polarization controller, DL: delay line. S is an interference signal which is one of two spectra separated by FC2. S* is the other passed through DL.
Fig. 4
Fig. 4 Interference fringes from the 250th A line of 500 A lines detected by our BD-SD-OCT (a) without the DL (b) with the DL, (c) black: balanced signals subtracted black signal from red signal of (b), red: balanced signals subtracted black signal from red signal of (a), (d) point spread function of (c). The sensitivity improved about 4.79 dB after applying the DL.
Fig. 5
Fig. 5 The measured sensitivity roll-off as a function of depth. Red line and square points refer to the sensitivity of BD-SD-OCT with DL. Blue line and circle points refer to the sensitivity of BD-SD-OCT without DL. Black line and triangle points refer to the sensitivity of UD. The sensitivity enhancement between the BD-SD-OCT with DL and the UD-OCT is about 6 dB.
Fig. 6
Fig. 6 2D OCT images of a multilayer tape obtained by UD, (a) BD without the DL, and (b) BD with the DL (c), (d) depth-resolved A-line signals through FFT of averaged red lines in Figs. 6(b) and 6(c), (e) depth-resolved A-line signals with a low-pass filter, red dotted line: mean noise level in BD with DL, black dotted line: mean noise level in BD without DL.
Fig. 7
Fig. 7 Rat-tail OCT images obtained by (a) UD, (b) BD without the DL, and (c) BD with the DL. Red dotted lines (1), (2), and (3) in Fig. 7 will be discussed in Fig. 8.
Fig. 8
Fig. 8 (a)-(c) Normalized intensity profiles after averaging each of the 7 A-lines marked by red dotted lines, (1), (2), and (3), in Fig. 7, (d) Intensity mean values obtained from each normalized intensity signal in the range between 0.3 mm and 1.4 mm in Fig. 8(a)-8(c).
Fig. 9
Fig. 9 left column: In vivo imaging of a human volunteer’s eye using BD-SD-OCT. (a) human eye image using UD, (b) BD without DL, and (c) BD with DL, right column: intensity profiles of yellow dotted lines marked on images in left column. (d) A normalized intensity profile of the yellow line in Fig. 9(a), (e) A normalized intensity profile of the yellow line in Fig. 9(b), (f) A normalized intensity profile of the yellow line in Fig. 9(c). LPF: low pass filter. Note that DC line in image was not removed and no filter processing was employed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l f i b e r = c f c × n e f f .

Metrics