Abstract

The discovery of high frequency temporal fluctuation of human ocular wave aberration dictates the necessity of high speed adaptive optics (AO) correction for high resolution retinal imaging. We present a high speed AO system for an experimental adaptive optics scanning laser ophthalmoscope (AOSLO). We developed a custom high speed Shack-Hartmann wavefront sensor and maximized the wavefront detection speed based upon a trade-off among the wavefront spatial sampling density, the dynamic range, and the measurement sensitivity. We examined the temporal dynamic property of the ocular wavefront under the AOSLO imaging condition and improved the dual-thread AO control strategy. The high speed AO can be operated with a closed-loop frequency up to 110 Hz. Experiment results demonstrated that the high speed AO system can provide improved compensation for the wave aberration up to 30 Hz in the living human eye.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging

Robert J. Zawadzki, Steven M. Jones, Scot S. Olivier, Mingtao Zhao, Bradley A. Bower, Joseph A. Izatt, Stacey Choi, Sophie Laut, and John S. Werner
Opt. Express 13(21) 8532-8546 (2005)

Flood-illuminated adaptive optics ophthalmoscope with a single curved relay mirror

Ruixue Liu, Yue Qi, Xianliang Zheng, Mingliang Xia, and Li Xuan
Photon. Res. 1(3) 124-129 (2013)

Adaptive optics flood-illumination camera for high speed retinal imaging

Jungtae Rha, Ravi S. Jonnal, Karen E. Thorn, Junle Qu, Yan Zhang, and Donald T. Miller
Opt. Express 14(10) 4552-4569 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  2. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
    [Crossref] [PubMed]
  3. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [Crossref] [PubMed]
  4. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
    [Crossref] [PubMed]
  5. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [Crossref] [PubMed]
  6. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [Crossref] [PubMed]
  7. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [Crossref] [PubMed]
  8. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [Crossref] [PubMed]
  9. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [Crossref] [PubMed]
  10. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
    [Crossref] [PubMed]
  11. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [Crossref] [PubMed]
  12. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [Crossref]
  13. L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science Principles, Practices, Design, and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, 2006), pp. 119–137.
  14. P. Y. Madec, “Control techniques,” in Adaptive Optics in Astronomy, F. Roddier, eds. (Cambridge University Press, 2004), pp. 131–154.
  15. D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. A 67(3), 390–393 (1977).
    [Crossref]
  16. D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. A 66(3), 193–206 (1976).
    [Crossref]
  17. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  18. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [Crossref] [PubMed]
  19. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003).
    [Crossref] [PubMed]
  20. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11(21), 2704–2716 (2003).
    [Crossref] [PubMed]
  21. A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009).
    [Crossref] [PubMed]
  22. S. M. Fadali and A. Visioli, Digital Control Engineering: Analysis and Design (Academic Press, 2009).
  23. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [Crossref] [PubMed]
  24. D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
    [Crossref] [PubMed]
  25. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [Crossref] [PubMed]
  26. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
    [Crossref]
  27. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
    [Crossref] [PubMed]
  28. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [Crossref] [PubMed]
  29. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
    [Crossref] [PubMed]
  30. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [Crossref] [PubMed]
  31. W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009).
    [Crossref] [PubMed]
  32. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
    [Crossref] [PubMed]
  33. W. Zou, X. Qi, G. Huang, and S. A. Burns, “Improving wavefront boundary condition for in vivo high resolution adaptive optics ophthalmic imaging,” Biomed. Opt. Express 2(12), 3309–3320 (2011).
    [Crossref] [PubMed]
  34. W. Zou, X. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011).
    [Crossref] [PubMed]
  35. A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [Crossref] [PubMed]
  36. D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
    [Crossref] [PubMed]
  37. Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
    [Crossref] [PubMed]
  38. Y. Yu and Y. Zhang, “Dual-thread parallel control strategy for ophthalmic adaptive optics,” Chin. Opt. Lett. 12(12), 121202 (2014).
    [Crossref] [PubMed]
  39. K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
    [PubMed]
  40. A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
    [Crossref] [PubMed]
  41. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  42. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [Crossref] [PubMed]
  43. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
    [Crossref] [PubMed]
  44. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [Crossref] [PubMed]
  45. G. Yoon, “Wavefront sensing and diagnostic uses,” in Adaptive Optics for Vision Science Principles, Practices, Design, and Applications, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, 2006), pp.63–81.
  46. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [Crossref] [PubMed]
  47. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [Crossref] [PubMed]
  48. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
    [Crossref] [PubMed]
  49. O. P. Kocaoglu, R. D. Ferguson, R. S. Jonnal, Z. Liu, Q. Wang, D. X. Hammer, and D. T. Miller, “Adaptive optics optical coherence tomography with dynamic retinal tracking,” Biomed. Opt. Express 5(7), 2262–2284 (2014).
    [Crossref] [PubMed]
  50. Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
    [Crossref] [PubMed]
  51. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
    [Crossref] [PubMed]
  52. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
    [Crossref] [PubMed]
  53. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [Crossref] [PubMed]
  54. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38 (22), 4801-4804 (2014).
    [PubMed]
  55. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (5)

2013 (3)

2011 (6)

2010 (1)

2009 (4)

W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009).
[Crossref] [PubMed]

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009).
[Crossref] [PubMed]

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (6)

2006 (5)

2005 (2)

2004 (1)

2003 (2)

2002 (3)

2001 (3)

1997 (1)

1994 (1)

1977 (1)

D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. A 67(3), 390–393 (1977).
[Crossref]

1976 (1)

D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. A 66(3), 193–206 (1976).
[Crossref]

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Ahamd, K.

Ahnelt, P. K.

Aragón, J. L.

Arathorn, D. W.

Artal, P.

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Balderas-Mata, S.

Bierden, P.

Bille, J.

Bille, J. F.

Bonora, S.

Bower, B. A.

Bradley, A.

Burns, S. A.

Campbell, M.

Cense, B.

Chen, D. C.

Chen, L.

Cheng, X.

Choi, S.

Choi, S. S.

Cox, I. G.

Cua, M.

Dainty, C.

Delori, F. C.

Diaz-Santana, L.

Doble, N.

Donnelly, W.

Drexler, W.

Dubra, A.

Duncan, J. L.

Elsner, A. E.

Evans, J. W.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernández, E. J.

Fried, D. L.

D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. A 66(3), 193–206 (1976).
[Crossref]

Gao, W.

Gasson, P.

Gee, B. P.

Girkin, C. A.

Goelz, S.

Götzinger, E.

Gradowski, M. A.

Gray, D. C.

Greenwood, D. P.

D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. A 67(3), 390–393 (1977).
[Crossref]

D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. A 66(3), 193–206 (1976).
[Crossref]

Grimm, B.

Guirao, A.

Hammer, D. X.

Hebert, T.

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Hofer, H.

Hong, X.

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Huang, G.

Izatt, J. A.

Jian, Y.

Jones, S.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kim, D. Y.

Kocaoglu, O. P.

Laut, S.

Leitgeb, R. A.

Li, C.

Li, K. Y.

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

Liang, J.

Liu, Z.

Lundström, L.

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009).
[Crossref] [PubMed]

Meadway, A.

Merigan, W.

Merino, D.

Miller, D.

Miller, D. T.

O. P. Kocaoglu, R. D. Ferguson, R. S. Jonnal, Z. Liu, Q. Wang, D. X. Hammer, and D. T. Miller, “Adaptive optics optical coherence tomography with dynamic retinal tracking,” Biomed. Opt. Express 5(7), 2262–2284 (2014).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
[Crossref] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
[Crossref]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Mira-Agudelo, A.

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009).
[Crossref] [PubMed]

Mishra, S.

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

Munro, I.

Nirmaier, T.

Nozato, K.

Oliver, S. S.

Olivier, S.

Olivier, S. S.

Parker, A.

Pilli, S.

Pircher, M.

Poonja, S.

Porter, J.

Považay, B.

Prieto, P. M.

Pudasaini, G.

Qi, X.

Qu, J.

Queener, H.

Reinholz, F.

Rha, J.

Romero-Borja, F.

Roorda, A.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Rossi, E. A.

Saito, K.

Sarunic, M. V.

Sattmann, H.

Silva, D. A.

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Singer, B.

Sliney, D. H.

Sredar, N.

Sulai, Y.

Thibos, L. N.

Thorn, K. E.

Tiruveedhula, P.

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

Torti, C.

Tumbar, R.

Twietmeyer, T. H.

Unterhuber, A.

Vogel, C. R.

Wang, Q.

Webb, R. H.

Werner, J. S.

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[Crossref] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

Williams, D. R.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[Crossref] [PubMed]

N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
[Crossref] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[Crossref] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

Wolfing, J. I.

Wong, K. S. K.

Xu, J.

Yamauchi, Y.

Yang, Q.

Yoon, G.

Yoon, G. Y.

Yu, Y.

Zawadzki, R. J.

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[Crossref] [PubMed]

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38 (22), 4801-4804 (2014).
[PubMed]

S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38(22), 4801–4804 (2013).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref] [PubMed]

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

Zhang, J.

Zhang, Y.

Y. Yu and Y. Zhang, “Dual-thread parallel control strategy for ophthalmic adaptive optics,” Chin. Opt. Lett. 12(12), 121202 (2014).
[Crossref] [PubMed]

A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
[Crossref] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
[Crossref]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[Crossref] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

Zhao, M.

Zou, W.

Biomed. Opt. Express (10)

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, and J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[Crossref] [PubMed]

A. Dubra and Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[Crossref] [PubMed]

W. Zou, X. Qi, and S. A. Burns, “Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm,” Biomed. Opt. Express 2(7), 1986–2004 (2011).
[Crossref] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, and A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[Crossref] [PubMed]

W. Zou, X. Qi, G. Huang, and S. A. Burns, “Improving wavefront boundary condition for in vivo high resolution adaptive optics ophthalmic imaging,” Biomed. Opt. Express 2(12), 3309–3320 (2011).
[Crossref] [PubMed]

Z. Liu, O. P. Kocaoglu, and D. T. Miller, “In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors,” Biomed. Opt. Express 4(12), 3007–3029 (2013).
[Crossref] [PubMed]

Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
[Crossref] [PubMed]

O. P. Kocaoglu, R. D. Ferguson, R. S. Jonnal, Z. Liu, Q. Wang, D. X. Hammer, and D. T. Miller, “Adaptive optics optical coherence tomography with dynamic retinal tracking,” Biomed. Opt. Express 5(7), 2262–2284 (2014).
[Crossref] [PubMed]

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. A. Rossi, “Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy,” Biomed. Opt. Express 5(9), 3174–3191 (2014).
[Crossref] [PubMed]

K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

J. Opt. Soc. Am. A (11)

D. P. Greenwood, “Bandwidth specification for adaptive optics systems,” J. Opt. Soc. Am. A 67(3), 390–393 (1977).
[Crossref]

D. P. Greenwood and D. L. Fried, “Power spectra requirements for wave-front-compensative systems,” J. Opt. Soc. Am. A 66(3), 193–206 (1976).
[Crossref]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[Crossref] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18(8), 1793–1803 (2001).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref] [PubMed]

D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
[Crossref] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
[Crossref] [PubMed]

R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
[Crossref] [PubMed]

Nat. Neurosci. (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12(8), 967–969 (2009).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009).
[Crossref] [PubMed]

Opt. Express (18)

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003).
[Crossref] [PubMed]

T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11(21), 2704–2716 (2003).
[Crossref] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8(11), 631–643 (2001).
[Crossref] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[Crossref] [PubMed]

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
[Crossref]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[Crossref] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[Crossref] [PubMed]

W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
[Crossref] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[Crossref] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006).
[Crossref] [PubMed]

D. C. Gray, W. Merigan, J. I. Wolfing, B. P. Gee, J. Porter, A. Dubra, T. H. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. R. Williams, “In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells,” Opt. Express 14(16), 7144–7158 (2006).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[Crossref] [PubMed]

A. Meadway, C. A. Girkin, and Y. Zhang, “A dual-modal retinal imaging system with adaptive optics,” Opt. Express 21(24), 29792–29807 (2013).
[Crossref] [PubMed]

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express 19(15), 14160–14171 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. Am. Control Conf. (1)

K. Y. Li, S. Mishra, P. Tiruveedhula, and A. Roorda, “Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope,” Proc. Am. Control Conf. 2009, 3848–3853 (2009).
[PubMed]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Other (5)

L. Chen, “Control algorithms,” in Adaptive Optics for Vision Science Principles, Practices, Design, and Applications, J. Porter, H. Queener, J. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, 2006), pp. 119–137.

P. Y. Madec, “Control techniques,” in Adaptive Optics in Astronomy, F. Roddier, eds. (Cambridge University Press, 2004), pp. 131–154.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).

G. Yoon, “Wavefront sensing and diagnostic uses,” in Adaptive Optics for Vision Science Principles, Practices, Design, and Applications, J. Porter, H. M. Queener, J. E. Lin, K. Thorn, and A. Awwal, eds. (John Wiley & Sons, 2006), pp.63–81.

S. M. Fadali and A. Visioli, Digital Control Engineering: Analysis and Design (Academic Press, 2009).

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (7006 KB)      AOSLO video with AO correction for wavefront aberration at 100 Hz (Media 1).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

The experimental AOSLO system.

Fig. 2
Fig. 2

High speed AO wavefront detection and correction. Wavefront compensation is carried out when AO is turned on. When AO is off, the deformable mirror is disabled thus the system functions as a wavefront sensor.

Fig. 3
Fig. 3

The power spectra of the wavefront aberration of a static model eye in the AOSLO measured under different light scanning conditions. (a) Both horizontal (fast) and vertical (slow) scanners were scanning over a field of 1.2° X 1.2°. (b) Both scanners were power off. (c) The horizontal (fast) scanner was scanning over a 1.2° angle and the vertical (slow) scanner was power off. (d) The horizontal (fast) scanner was scanning over a 1.2° angle and the vertical (slow) scanner was power on but applied with 0 volt voltage. The artificial frequency component of 15 Hz and its harmonic components are apparent when the vertical scanner was running.

Fig. 4
Fig. 4

The power spectra of the human eyes’ wavefront aberration. The red lines are power spectra obtained with both horizontal (fast) and vertical (slow) scanners scanning over a field of 1.2° X 1.2°. The artificial frequency component of 15 Hz and its harmonic components are apparent. The green lines represent power spectra obtained with the fast scanner scanning (over a 1.2° angle) only and the slow scanner was power on but applied consistently with 0 V. There are no artificial frequency components arising at the harmonics of the slow scanner.

Fig. 5
Fig. 5

The power spectra of the wavefront aberration of the human eye under different fixation conditions. (a) & (b) were obtained from 2 subjects when they fixated on a target at 25 cm distance, i.e. accommodation of 4.0 D. (c) & (d) were obtained from 2 subjects when they fixated on the left end of the line formed by the scanner over the retina, i.e., the infinity. The green curves are the power spectra of the static mode eye. Each spectral plot is an average of the spectra of 5 series of time courses of the RMS wavefront aberration over 5 seconds. In each panel, the power spectra of the human eye and the model eye were normalized with the maximum spectral component of the human eye’s wavefront aberration, which varied person to person. Thus, the model eye’s spectral curves are at different levels that are related to the maximum spectral component of the single individual.

Fig. 6
Fig. 6

The power spectra of Zernike modes of the wavefront aberration. The aberration was measured with paralyzed accommodation from one subject’s eye over a 6 mm pupil. The red, green, and blue curves are spectra of the 2nd, 3rd, and 4th order of the Zernike modes, respectively. The subject fixated on the left end of scanning line (the infinity). The power spectra are an average of the spectra of 10 series of time courses of the RMS wavefront aberration over 5 seconds. All the spectra of the Zernike modes were normalized with the maximum spectrum of the defocus ( Z 2 0 ).

Fig. 7
Fig. 7

AO corrects wavefront aberration with the closed-loop frequency of 100 Hz and 20 Hz. (a) The subject’s eye was with a nature pupil and accommodation. (b) The pupil of the same subject was dilated with 1.0% tropicamide and 2.5% phenylephrine hydrochloride. The accommodation was paralyzed. The subject fixated on the upper-left corner of the light scanning rater, i.e., the infinity. For the 20 Hz AO, the wavefront aberration was measured at 100 Hz but the correction was conducted at 20 Hz. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 8
Fig. 8

AOSLO video with AO correction for wavefront aberration at 100 Hz (Visualization 1). At the beginning of this video, AO is not turned on and cone photoreceptors are invisible. AO starts at the 5th frame. The brightness, contrast, and resolution were significantly improved. Contiguous cone mosaic is clearly resolved. The image was taken at the nasal retina 0.5 degree away from the foveal center. The frame size is of 0.8 degree X 0.5 degree or approximately 240 μm X 150 μm. The image distortion caused by nonlinear scanning of the resonant scanner was corrected but the distortion caused by eye movements remained. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 9
Fig. 9

AO corrects wavefront aberration with the closed-loop frequency of 100 Hz. The blue line represents the power spectra of the wave aberration before AO correction, whereas the green line is the power spectra of the residual wave aberration after AO correction. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 10
Fig. 10

Comparison of AO compensation of wavefront aberration with 20Hz and 100 Hz closed-loop frequency. The power rejection ratios (red and green dots) are average values of 5 subjects. The trend lines are least square fitting. For the 20 Hz AO, the wavefront aberration was measured at 100 Hz. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 11
Fig. 11

AOSLO images taken with 100 Hz AO (a) and 20 Hz AO (b). The images were acquired at 3 degrees eccentricity nasally along the primary horizontal retinal meridian. The size of these images is 256 pixels subtending a field of view of 0.53 degree. Each image is a registered set of 75 AO-corrected frames and has been corrected for distortions due to eye movements. The average center-to-center spacing of cones around the yellow arrowhead is 7.50 μm (measured within a 50 μm X 50 μm area). The average center-to-center spacing of rods is about 3.1 μm (measured from the resolved visible rods). Yellow and green arrowheads indicate improved visibility of rod photoreceptors in the image taken with the high speed 100 Hz AO. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 12
Fig. 12

Radial power spectra of the retinal images taken with 100 Hz AO and 20 Hz AO correction. Each plot is an average of the radial power spectra of 75 successive retinal images within a 5-second video from one subject. The images were acquired at 4 degrees eccentricity nasally along the primary horizontal retinal meridian. The averaged retina images are shown in Fig. 11. Black arrowheads point to the peaks corresponding to cones (~41 cycles/degree) and rod (~90 cycles/degree). The inset is the magnified spectral region indicated by the box over which the improvement of power spectra by the 100 Hz AO correction is 18-56%. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 13
Fig. 13

Histograms of 75 successive retinal images within a 5-second video taken from one subject with 100 Hz AO and 20 Hz AO correction. The images were acquired at 4 degrees eccentricity nasally along the primary horizontal retinal meridian. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 14
Fig. 14

The AOSLO image taken in the fovea of a human subject (woman, 49 years old) with healthy retina. The image size is of 2°, or approximately 600 μm on a side. The image is a montage of a series of individual images taken across fovea with a 1.2° field of view. All individual images are a registered set of 20 AO-corrected frames and have been corrected for distortions due to eye movements. DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Fig. 15
Fig. 15

The AOSLO image showing cone and rod photoreceptors taken in the retina of human subject (woman, 60 year old) with healthy retina. The image size is of 2°, or approximately 600 μm on a side. It is a montage of a series of individual small images taken with a 1.2° field of view. All small images are a registered set of 20 AO-corrected frames and have been corrected for distortions due to eye movements . The image was taken along the equator of the retina nasally about 9° away from the foveal center, revealing that cones (the large spots with dark annulus) are surrounded by rods (small spots). The AOSLO DM1 (Hi-Speed DM97-15, ALPAO SAS, France) was used to correct the wave aberration during the image acquisition.

Metrics