Abstract

A simple method to measure single-mode optical fiber lengths is proposed and demonstrated using a gain-switched 1.55-μm distributed feedback laser without a fast photodetector or an optical interferometer. From the variation in the amplified spontaneous emission noise intensity with respect to the modulation frequency of the gain switching, the optical length of a 1-km single-mode fiber immersed in water is found to be 1471.043915 m ± 33 μm, corresponding to a relative standard deviation of 2.2 × 10−8. This optical length is an average value over a measurement time of one minute under ordinary laboratory conditions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Precise length measurements in multimode optical fibers

B. L. Danielson
Appl. Opt. 30(27) 3867-3872 (1991)

Pulse shortening of gain switched single mode semiconductor lasers using a variable delay interferometer

Antonio Consoli and Ignacio Esquivias
Opt. Express 20(20) 22481-22489 (2012)

Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme

Yi-Ping Wang, Dong Ning Wang, and Wei Jin
Appl. Opt. 45(25) 6469-6472 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G.-L. Shentu, Q.-C. Sun, X. Jiang, X.-D. Wang, J. S. Pelc, M. M. Fejer, Q. Zhang, and J.-W. Pan, “217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector,” Opt. Express 21(21), 24674–24679 (2013).
    [Crossref] [PubMed]
  2. F. Peng, H. Wu, X.-H. Jia, Y.-J. Rao, Z.-N. Wang, and Z.-P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  3. M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S.-H. Chin, J. D. Ania-Castañon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thévenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  4. D. K. Gifford, M. E. Froggatt, M. S. Wolfe, S. T. Kreger, and B. J. Soller, “Millimeter resolution reflectometry over two kilometers,” in 33rd European Conference and Exhibition on Optical Communication (IEEE, 2007), paper Tu.3.6.1.
  5. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).
    [Crossref]
  6. Y.-P. Wang, D. N. Wang, and W. Jin, “Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme,” Appl. Opt. 45(25), 6469–6472 (2006).
    [Crossref] [PubMed]
  7. B. Qi, A. Tausz, L. Qian, and H.-K. Lo, “High-resolution, large dynamic range fiber length measurement based on a frequency-shifted asymmetric Sagnac interferometer,” Opt. Lett. 30(24), 3287–3289 (2005).
    [Crossref] [PubMed]
  8. K. Wada, S. Takeshita, Y. Hono, T. Matsuyama, and H. Horinaka, “Simple distance measurement using a gain-switched DFB laser as two in one light source and photodetector,” in Conference on Lasers and Electro-Optics/Pacific Rim (OSA, 2011), paper C570.
  9. I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
    [Crossref]
  10. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  11. T. Zhang, J. Zhu, T. Guo, J. Wang, and S. Ye, “Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay,” Appl. Opt. 52(15), 3495–3499 (2013).
    [Crossref] [PubMed]
  12. K. Wada, Y. Hono, T. Hashii, Y. Yamagami, T. Matsuyama, and H. Horinaka, “Simple method for measuring timing-jitter in a gain-switched DFB laser using delayed optical feedback,” in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2013), paper WPF-1.
    [Crossref]

2014 (2)

2013 (2)

2012 (1)

2006 (1)

2005 (1)

2000 (1)

1998 (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castañon, J. D.

Chin, S.-H.

Corredera, P.

Fan, X.

Fejer, M. M.

Fujima, I.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Gonzalez-Herraez, M.

Guo, T.

Ito, F.

Iwasaki, S.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Jia, X.-H.

Jiang, X.

Jin, W.

Koshikiya, Y.

Lo, H.-K.

Martin-Lopez, S.

Matsumoto, H.

Minoshima, K.

Pan, J.-W.

Pelc, J. S.

Peng, F.

Peng, Z.-P.

Qi, B.

Qian, L.

Rao, Y.-J.

Rochat, E.

Seta, K.

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Shentu, G.-L.

Soto, M. A.

Sun, Q.-C.

Tausz, A.

Thévenaz, L.

Wang, D. N.

Wang, J.

Wang, X.-D.

Wang, Y.-P.

Wang, Z.-N.

Wu, H.

Ye, S.

Zhang, Q.

Zhang, T.

Zhu, J.

Appl. Opt. (3)

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

I. Fujima, S. Iwasaki, and K. Seta, “High-resolution distance meter using optical intensity modulation at 28 GHz,” Meas. Sci. Technol. 9(7), 1049–1052 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (3)

K. Wada, S. Takeshita, Y. Hono, T. Matsuyama, and H. Horinaka, “Simple distance measurement using a gain-switched DFB laser as two in one light source and photodetector,” in Conference on Lasers and Electro-Optics/Pacific Rim (OSA, 2011), paper C570.

D. K. Gifford, M. E. Froggatt, M. S. Wolfe, S. T. Kreger, and B. J. Soller, “Millimeter resolution reflectometry over two kilometers,” in 33rd European Conference and Exhibition on Optical Communication (IEEE, 2007), paper Tu.3.6.1.

K. Wada, Y. Hono, T. Hashii, Y. Yamagami, T. Matsuyama, and H. Horinaka, “Simple method for measuring timing-jitter in a gain-switched DFB laser using delayed optical feedback,” in Conference on Lasers and Electro-Optics/Pacific Rim (IEEE, 2013), paper WPF-1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Experimental configuration for measuring the length of an optical fiber loop.
Fig. 2
Fig. 2 Variation in the ASE noise intensity with respect to the modulation frequency of the gain switching in the system in Fig. 1.
Fig. 3
Fig. 3 Variation in the ASE noise intensity with respect to the modulation frequency near f70. The red curve is a Gaussian fit.
Fig. 4
Fig. 4 Variations in the optical fiber length (blue dots) and in room temperature (red dots) with time.
Fig. 5
Fig. 5 Histogram obtained by repeatedly measuring the five peak frequencies in Fig. 2 and binning the results. The red curve is a Gaussian fit.
Fig. 6
Fig. 6 (a) Optical path differences when the mirror is moved backward (circles) and forward (squares) 32 times in 12-μm steps. (b) Histogram of the measured values of the optical path differences. The red curve is a Gaussian fit.
Fig. 7
Fig. 7 Optical path difference versus mirror displacement. The dashed line plots the expected relation between them.
Fig. 8
Fig. 8 Variation in the ASE noise intensity with the modulation frequency when a 1-km optical fiber is connected to the fiber loop shown in Fig. 1.
Fig. 9
Fig. 9 Variations in the ASE noise intensity with the modulation frequency near (a) fm and (b) fm + 206 in Fig. 8. The red curves are Gaussian fits.
Fig. 10
Fig. 10 Estimated optical path difference versus the mirror displacement for a 1-km optical fiber. The dashed line graphs the expected relation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L 0 = m c f m = ( m + n ) c f m + n = c δ f
m = f m δ f ,

Metrics