Abstract

The lack of accurate and robust photodynamic therapy dosimetry is one of the obstacles for the widespread clinical applications. In this study, we propose a methodology to monitor the production of reactive oxygen species in real-time using the phosphorescent spectra of metalloporphyrin based photosensitizer. The correlation among the phosphorescence intensity, the 1O2 quantum yield (ΦΔ) and the oxygen concentration [O2] was established. A method of determining ΦΔ with different [O2] was studied based on comparative spectrophotometry, and the quantum yield ΦΔ of gadolinium metalated hematoporphyrin mono ether (Gd-HMME) in methanol was determined for different [O2]. With our method, both [O2] and ΦΔ could be monitored simultaneously using the phosphorescence spectra. The photochemical reactions in a liquid phantom composed of Gd-HMME and 1O2 capture 1,3-diphenylisobenzofuran (DPBF) were correlated using the kinetics equations of singlet oxygen generation and reaction. Using our method, the 1O2 quantum yield becomes observable and the 1O2 dose rate could be calculated by the product of photosensitizer absorption and its 1O2 quantum yield. Moreover, this 1O2 dosimetry could be observed by spectral imaging intuitively without complex analysis, and is especially suitable for precise customized photodynamic treatment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy

H. J. C. M. Sterenborg, J.W. de Wolf, M. Koning, B Kruijt, A. van den Heuvel, and D. J. Robinson
Opt. Express 12(9) 1873-1878 (2004)

Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector

Nathan R. Gemmell, Aongus McCarthy, Baochang Liu, Michael G. Tanner, Sander D. Dorenbos, Valery Zwiller, Michael S. Patterson, Gerald S. Buller, Brian C. Wilson, and Robert H. Hadfield
Opt. Express 21(4) 5005-5013 (2013)

Synthesis and singlet oxygen activities of near infrared photosensitizers by conjugation with upconversion nanoparticles

Qian Yang, Chuang Zhao, Jun Zhao, and Yong Ye
Opt. Mater. Express 7(3) 913-923 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
    [Crossref] [PubMed]
  2. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
    [Crossref] [PubMed]
  3. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
    [Crossref] [PubMed]
  4. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
    [Crossref] [PubMed]
  5. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
    [Crossref] [PubMed]
  6. B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
    [Crossref] [PubMed]
  7. M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
    [Crossref] [PubMed]
  8. S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
    [Crossref] [PubMed]
  9. H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
    [Crossref] [PubMed]
  10. M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
    [Crossref] [PubMed]
  11. J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
    [Crossref] [PubMed]
  12. J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci. 5(1), 73–81 (2006).
    [Crossref] [PubMed]
  13. B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
    [Crossref] [PubMed]
  14. I. Salas-García, F. Fanjul-Vélez, and J. L. Arce-Diego, “Superficial radially resolved fluorescence and 3D photochemical time-dependent model for photodynamic therapy,” Opt. Lett. 39(7), 1845–1848 (2014).
    [Crossref] [PubMed]
  15. I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625 (1998).
    [PubMed]
  16. W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
    [Crossref] [PubMed]
  17. T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
    [PubMed]
  18. A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
    [Crossref] [PubMed]
  19. T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
    [Crossref] [PubMed]
  20. T. H. Foster and L. Gao, “Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density,” Radiat. Res. 130(3), 379–383 (1992).
    [Crossref] [PubMed]
  21. K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
    [Crossref] [PubMed]
  22. K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
    [Crossref] [PubMed]
  23. T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
    [Crossref] [PubMed]
  24. F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
    [Crossref]
  25. M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
    [Crossref]
  26. S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
    [Crossref] [PubMed]
  27. H. Sterenborg, J. de Wolf, M. Koning, B. Kruijt, A. van den Heuvel, and D. Robinson, “Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy,” Opt. Express 12(9), 1873–1878 (2004).
    [Crossref] [PubMed]
  28. R. I. Dmitriev and D. B. Papkovsky, “Optical probes and techniques for O2 measurement in live cells and tissue,” Cell. Mol. Life Sci. 69(12), 2025–2039 (2012).
    [Crossref] [PubMed]
  29. D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
    [Crossref] [PubMed]
  30. E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10(26), 1557–1562 (2002).
    [Crossref] [PubMed]
  31. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
    [Crossref] [PubMed]
  32. K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
    [Crossref] [PubMed]
  33. P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
    [Crossref] [PubMed]
  34. P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
    [Crossref] [PubMed]
  35. A. S. Brandis, Y. Salomon, and A. Scherz, “Bacteriochlorophyll sensitizers in photodynamic therapy,” in Chlorophylls and Bacteriochlorophylls, B. Grimm, R. J. Porra, W. Rüdiger, and H. Scheer, ed. (Springer Netherlands, 2006).
  36. P. Wang, F. Qin, L. Wang, F. Li, Y. Zheng, Y. Song, Z. Zhang, and W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
    [Crossref] [PubMed]
  37. T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
    [Crossref] [PubMed]

2015 (1)

T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
[Crossref] [PubMed]

2014 (3)

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

I. Salas-García, F. Fanjul-Vélez, and J. L. Arce-Diego, “Superficial radially resolved fluorescence and 3D photochemical time-dependent model for photodynamic therapy,” Opt. Lett. 39(7), 1845–1848 (2014).
[Crossref] [PubMed]

P. Wang, F. Qin, L. Wang, F. Li, Y. Zheng, Y. Song, Z. Zhang, and W. Cao, “Luminescence and photosensitivity of gadolinium labeled hematoporphyrin monomethyl ether,” Opt. Express 22(3), 2414–2422 (2014).
[Crossref] [PubMed]

2013 (2)

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

2012 (4)

R. I. Dmitriev and D. B. Papkovsky, “Optical probes and techniques for O2 measurement in live cells and tissue,” Cell. Mol. Life Sci. 69(12), 2025–2039 (2012).
[Crossref] [PubMed]

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
[Crossref] [PubMed]

M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
[Crossref] [PubMed]

2011 (4)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

2010 (2)

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

2009 (1)

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

2008 (4)

S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

2006 (4)

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci. 5(1), 73–81 (2006).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
[Crossref] [PubMed]

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

2004 (2)

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

H. Sterenborg, J. de Wolf, M. Koning, B. Kruijt, A. van den Heuvel, and D. Robinson, “Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy,” Opt. Express 12(9), 1873–1878 (2004).
[Crossref] [PubMed]

2003 (1)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

2002 (2)

E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10(26), 1557–1562 (2002).
[Crossref] [PubMed]

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

2000 (1)

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

1998 (1)

I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625 (1998).
[PubMed]

1997 (1)

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref] [PubMed]

1993 (1)

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

1992 (1)

T. H. Foster and L. Gao, “Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density,” Radiat. Res. 130(3), 379–383 (1992).
[Crossref] [PubMed]

1991 (1)

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Agostinis, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Anbil, S.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Andersson-Engels, S.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Apreleva, S. V.

Arce-Diego, J. L.

Bendsoe, N.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Berg, K.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Bergamini, G.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Berneburg, M.

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Borisov, S. M.

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

Brun, P. H.

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

Bryant, R. G.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Busch, T. M.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

Cao, W.

Celli, J. P.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Cengel, K. A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Ceroni, P.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Chang, S. K.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Cottrell, W. J.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Crutchley, R. J.

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

Davis, S. J.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

de Wolf, J.

DeGroot, J. L.

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

DeRosa, M. C.

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

Dickson, E. F. G.

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

Dmitriev, R. I.

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

R. I. Dmitriev and D. B. Papkovsky, “Optical probes and techniques for O2 measurement in live cells and tissue,” Cell. Mol. Life Sci. 69(12), 2025–2039 (2012).
[Crossref] [PubMed]

Dolmans, D. E.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Drobniewski, K.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Dysart, J. S.

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci. 5(1), 73–81 (2006).
[Crossref] [PubMed]

Elrington, S.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Esipova, T. V.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Evans, C. L.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Evans, S. M.

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

Fanjul-Vélez, F.

Farahani, M.

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

Farrell, T. J.

B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
[Crossref] [PubMed]

Finlay, J. C.

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

Foster, T. H.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625 (1998).
[PubMed]

T. H. Foster and L. Gao, “Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density,” Radiat. Res. 130(3), 379–383 (1992).
[Crossref] [PubMed]

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Fukumura, D.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Gao, L.

T. H. Foster and L. Gao, “Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density,” Radiat. Res. 130(3), 379–383 (1992).
[Crossref] [PubMed]

Georgakoudi, I.

I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625 (1998).
[PubMed]

Gibson, S. L.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Girotti, A. W.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Golab, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Gollmer, A.

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Gollnick, S. O.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Gorun, S. M.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Hackbarth, S.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Hahn, S. M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

Hamblin, M. R.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Hasan, T.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Helman, W. P.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Hilf, R.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Jäger, L.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Jain, R. K.

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Jarvi, M. T.

M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

Jiang, H.

Johansson, A.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Johansson, T.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Juzeniene, A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Kessel, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Keymel, K. R.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Kiesslich, T.

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Klimant, I.

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

Knox, R. S.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Koch, C. J.

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

Koning, M.

Korbelik, M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Koren, K.

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

Kositratna, G.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Kruijt, B.

Laubach, H. J.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Lebedev, A. Y.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Lee, S.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Li, F.

Lilge, L.

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref] [PubMed]

Liu, B.

T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
[Crossref] [PubMed]

B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
[Crossref] [PubMed]

Maisch, T.

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Mallidi, S.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Manstein, D.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Marchi, E.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Marian, C. M.

S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
[Crossref] [PubMed]

Moan, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Mroz, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Murant, R. S.

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

Niedre, M. J.

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

Nowis, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Oseroff, A. R.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Papkovsky, D. B.

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

R. I. Dmitriev and D. B. Papkovsky, “Optical probes and techniques for O2 measurement in live cells and tissue,” Cell. Mol. Life Sci. 69(12), 2025–2039 (2012).
[Crossref] [PubMed]

Paquette, A. D.

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Patel, H.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Patterson, M. S.

M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
[Crossref] [PubMed]

B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci. 5(1), 73–81 (2006).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref] [PubMed]

Penjweini, R.

T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
[Crossref] [PubMed]

Perun, S.

S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
[Crossref] [PubMed]

Piette, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Plaetzer, K.

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Pogue, B.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Pogue, B. W.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Pottier, R. H.

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

Qin, F.

Rizvi, I.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Robinson, D.

Röder, B.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Ross, A. B.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Saf, R.

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

Salas-García, I.

Samkoe, K. S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Schlothauer, J. C.

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

Schoenfeld, D.

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

Shives, E.

Song, Y.

Spring, B. Q.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Sterenborg, H.

Svanberg, K.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Svanberg, S.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

Tatchen, J.

S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
[Crossref] [PubMed]

Taylor, C. R.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Thompson, M. S.

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

van den Heuvel, A.

Verma, S.

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Vinogradov, S. A.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
[Crossref] [PubMed]

Wang, K. K.

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

Wang, K. K.-H.

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

Wang, L.

Wang, P.

Wilkinson, F.

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Wilson, B. C.

M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref] [PubMed]

Wilson, D. F.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, “Tomographic imaging of oxygen by phosphorescence lifetime,” Appl. Opt. 45(33), 8547–8559 (2006).
[Crossref] [PubMed]

Xu, Y.

Yuan, M.

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

Zhang, Z.

Zheng, Y.

Zhu, T. C.

T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
[Crossref] [PubMed]

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

Zurakowski, D.

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

BioMed Res. Int. (1)

T. Kiesslich, A. Gollmer, T. Maisch, M. Berneburg, and K. Plaetzer, “A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms,” BioMed Res. Int. 2013, 840417 (2013).
[Crossref] [PubMed]

Biophys. J. (1)

M. T. Jarvi, M. S. Patterson, and B. C. Wilson, “Insights into photodynamic therapy dosimetry: simultaneous singlet oxygen luminescence and photosensitizer photobleaching measurements,” Biophys. J. 102(3), 661–671 (2012).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[Crossref] [PubMed]

Cancer Res. (1)

T. M. Busch, S. M. Hahn, S. M. Evans, and C. J. Koch, “Depletion of tumor oxygenation during photodynamic therapy: detection by the hypoxia marker EF3 [2-(2-Nitroimidazol-1[H]-yl)-N-(3,3,3-trifluoropropyl)acetamide ],” Cancer Res. 60(10), 2636–2642 (2000).
[PubMed]

Cell. Mol. Life Sci. (1)

R. I. Dmitriev and D. B. Papkovsky, “Optical probes and techniques for O2 measurement in live cells and tissue,” Cell. Mol. Life Sci. 69(12), 2025–2039 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue, and T. Hasan, “Imaging and photodynamic therapy: mechanisms, monitoring, and optimization,” Chem. Rev. 110(5), 2795–2838 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42(22), 8700–8732 (2013).
[Crossref] [PubMed]

ChemPhysChem (1)

S. Perun, J. Tatchen, and C. M. Marian, “Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study,” ChemPhysChem 9(2), 282–292 (2008).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

W. J. Cottrell, A. D. Paquette, K. R. Keymel, T. H. Foster, and A. R. Oseroff, “Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas,” Clin. Cancer Res. 14(14), 4475–4483 (2008).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

M. C. DeRosa and R. J. Crutchley, “Photosensitized singlet oxygen and its applications,” Coord. Chem. Rev. 233, 351–371 (2002).
[Crossref]

Eur. J. Inorg. Chem. (1)

K. Koren, S. M. Borisov, R. Saf, and I. Klimant, “Strongly phosphorescent Iridium(III)-porphyrins – new oxygen indicators with tuneable photophysical properties and functionalities,” Eur. J. Inorg. Chem. 2011(10), 1531–1534 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

T. C. Zhu, B. Liu, and R. Penjweini, “Study of tissue oxygen supply rate in a macroscopic photodynamic therapy singlet oxygen model,” J. Biomed. Opt. 20(3), 038001 (2015).
[Crossref] [PubMed]

S. Mallidi, S. Anbil, S. Lee, D. Manstein, S. Elrington, G. Kositratna, D. Schoenfeld, B. Pogue, S. J. Davis, and T. Hasan, “Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema,” J. Biomed. Opt. 19(2), 028001 (2014).
[Crossref] [PubMed]

H. J. Laubach, S. K. Chang, S. Lee, I. Rizvi, D. Zurakowski, S. J. Davis, C. R. Taylor, and T. Hasan, “In-vivo singlet oxygen dosimetry of clinical 5-aminolevulinic acid photodynamic therapy,” J. Biomed. Opt. 13(5), 050504 (2008).
[Crossref] [PubMed]

A. Johansson, T. Johansson, M. S. Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In vivo measurement of parameters of dosimetric importance during interstitial photodynamic therapy of thick skin tumors,” J. Biomed. Opt. 11(3), 034029 (2006).
[Crossref] [PubMed]

J. C. Schlothauer, S. Hackbarth, L. Jäger, K. Drobniewski, H. Patel, S. M. Gorun, and B. Röder, “Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations,” J. Biomed. Opt. 17(11), 115005 (2012).
[Crossref] [PubMed]

J. Biophotonics (1)

K. K. Wang, J. C. Finlay, T. M. Busch, S. M. Hahn, and T. C. Zhu, “Explicit dosimetry for photodynamic therapy: macroscopic singlet oxygen modeling,” J. Biophotonics 3(5-6), 304–318 (2010).
[Crossref] [PubMed]

J. Phys. Chem. Ref. Data (1)

F. Wilkinson, W. P. Helman, and A. B. Ross, “Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution,” J. Phys. Chem. Ref. Data 22(1), 113–262 (1993).
[Crossref]

Lasers Med. Sci. (1)

B. C. Wilson, M. S. Patterson, and L. Lilge, “Implicit and explicit dosimetry in photodynamic therapy: a new paradigm,” Lasers Med. Sci. 12(3), 182–199 (1997).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photochem. Photobiol. (3)

I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem. Photobiol. 67(6), 612–625 (1998).
[PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects,” Photochem. Photobiol. 82(5), 1198–1210 (2006).
[Crossref] [PubMed]

M. T. Jarvi, M. J. Niedre, M. S. Patterson, and B. C. Wilson, “The influence of oxygen depletion and photosensitizer triplet-state dynamics during photodynamic therapy on accurate singlet oxygen luminescence monitoring and analysis of treatment dose response,” Photochem. Photobiol. 87(1), 223–234 (2011).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (3)

J. S. Dysart and M. S. Patterson, “Photobleaching kinetics, photoproduct formation, and dose estimation during ALA induced PpIX PDT of MLL cells under well oxygenated and hypoxic conditions,” Photochem. Photobiol. Sci. 5(1), 73–81 (2006).
[Crossref] [PubMed]

P. Ceroni, A. Y. Lebedev, E. Marchi, M. Yuan, T. V. Esipova, G. Bergamini, D. F. Wilson, T. M. Busch, and S. A. Vinogradov, “Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study,” Photochem. Photobiol. Sci. 10(6), 1056–1065 (2011).
[Crossref] [PubMed]

P. H. Brun, J. L. DeGroot, E. F. G. Dickson, M. Farahani, and R. H. Pottier, “Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy,” Photochem. Photobiol. Sci. 3(11-12), 1006–1010 (2004).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

B. Liu, T. J. Farrell, and M. S. Patterson, “Comparison of noninvasive photodynamic therapy dosimetry methods using a dynamic model of ALA-PDT of human skin,” Phys. Med. Biol. 57(3), 825–841 (2012).
[Crossref] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[Crossref] [PubMed]

Proc SPIE (1)

K. K.-H. Wang, T. M. Busch, J. C. Finlay, and T. C. Zhu, “Optimization of physiological parameter for macroscopic modeling of reacted singlet oxygen concentration in an in-vivo model,” Proc SPIE 7164, 71640O (2009).
[Crossref] [PubMed]

Radiat. Res. (2)

T. H. Foster, R. S. Murant, R. G. Bryant, R. S. Knox, S. L. Gibson, and R. Hilf, “Oxygen consumption and diffusion effects in photodynamic therapy,” Radiat. Res. 126(3), 296–303 (1991).
[Crossref] [PubMed]

T. H. Foster and L. Gao, “Dosimetry in photodynamic therapy: oxygen and the critical importance of capillary density,” Radiat. Res. 130(3), 379–383 (1992).
[Crossref] [PubMed]

Other (1)

A. S. Brandis, Y. Salomon, and A. Scherz, “Bacteriochlorophyll sensitizers in photodynamic therapy,” in Chlorophylls and Bacteriochlorophylls, B. Grimm, R. J. Porra, W. Rüdiger, and H. Scheer, ed. (Springer Netherlands, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Photophysical and photochemical processes during photodynamic treatments.
Fig. 2
Fig. 2 (a) The luminescence spectra of Gd-HMME at oxygen concentrations of 100 μM and 0. (b) The relationship between IP0/IP (IF/IP) and 3O2 concentration.
Fig. 3
Fig. 3 (a) Normalized irradiation spectra of 532 nm laser and absorbance of Gd-HMME and DPBF. (b) Time dependence of DPBF concentration on irradiation time in presence of Rose Bengal. (c) Time dependence of DPBF concentration on irradiation time in presence of Gd-HMME.
Fig. 4
Fig. 4 Photodegradation of DPBF in methanol solutions with different dissolved oxygen concentrations.
Fig. 5
Fig. 5 (a) The relationship between ΦΔ of Gd-HMME and [3O2]. (b) The relationship between ΦΔ of Gd-HMME and IP/IP0.
Fig. 6
Fig. 6 (a) Temporal distributions of [O2]. (b) Temporal distributions of IP/IP0. (c) Temporal distributions ΦΔ. (d) Temporal distributions of [DPBF]. (e) Temporal distributions of DPBF degradation rate k. (f) Dependence of light dosimetry on irradiance. (It is assumed that g = 1μM/s for air open system.)

Tables (2)

Tables Icon

Table 1 Definitions of variables describing photophysical and photochemical interactions between photosensitizer, oxygen and 1O2 capture DPBF

Tables Icon

Table 2 PS, PS concentrations, PS absorption Iabs, degradation rate of DPBF k, singlet oxygen quantum yield ΦΔ and the constant term Φ Δ I abs / k .

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Φ P = Φ T k P k P + k nP + k q [ O 3 2 ] ,
Φ Δ = Φ T k Δ k q k q [ O 3 2 ] k P + k nP + k q [ O 3 2 ] = Φ T f Δ T P T O 2 ,
I P0 I P = τ P0 τ P = 1 + k q τ P0 [ 3 O 2 ]= 1 + K SV [ 3 O 2 ],
Φ Δ = Φ T f Δ T ( 1 I P I P0 ) ,
d [ P 1 S] d t = v ρ σ PS [ P 1 S] + ( k F + k nF ) [ P 1 S * ] + ( k P + k nP + k q [ O 3 2 ] ) [ P 3 S * ] ,
d [ P 1 S * ] d t = v ρ σ PS [ P 1 S] ( k F + k nF + k ISC ) [ P 1 S * ] ,
d [ P 3 S * ] d t = k ISC [ P 1 S * ] ( k P + k nP + k q [ O 3 2 ] ) [ P 3 S * ] ,
d [ O 1 2 ] d t = k Δ [ O 3 2 ] [ P 3 S * ] ( k d + k ph + k c [DPBF] ) [ O 1 2 ],
d [DPBF] d t = - k c [ O 1 2 ][DPBF] = - k [DPBF] .
k = k c [ O 1 2 ] = k c Φ Δ v ρ σ PS [ P 1 S] k d .
k t = ln [ D P B F ] 0 [ D P B F ] .
I abs = I l a s e r ( 1 e σ PS [ P 1 S] L ) I l a s e r σ PS [ P 1 S] L ,
I abs = I l a s e r ( λ ) ( 1 e σ PS ( λ ) [ P 1 S] L ) d λ .
k d k c N A L h ν = Φ Δ I abs k ,
d [O 2 ] d t = 1 2 d [DPBF] d t + g ( 1 [O 2 ] [ O 2 ] 0 ) ,

Metrics