Abstract

We study the transport properties of a single photon scattered by a two-level system (TLS) in a T-shaped waveguide, which is made of two coupled-resonator waveguides (CRWs)— an infinite CRW and a semi-infinite CRW. The spontaneous emission of the TLS directs single photons from one CRW to the other. Although the transfer rate is different for the wave incident from different CRWs, due to the boundary breaking the translational symmetry, the boundary can enhance the transfer rate found in Phys. Rev. Lett. 111, 103604 (2013) and Phys. Rev. A 89, 013805 (2014), as the transfer rate could be unity for the wave incident from the semi-infinite CRW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-photon quantum router by two distant artificial atoms

Xin-Yu Chen, Feng-Yang Zhang, and Chong Li
J. Opt. Soc. Am. B 33(4) 583-588 (2016)

Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system

Cong Cao, Yu-Wen Duan, Xi Chen, Ru Zhang, Tie-Jun Wang, and Chuan Wang
Opt. Express 25(15) 16931-16946 (2017)

Single photon transport in two waveguides chirally coupled by a quantum emitter

Mu-Tian Cheng, Xiao-San Ma, Jia-Yan Zhang, and Bing Wang
Opt. Express 24(17) 19988-19993 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H.J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
    [Crossref]
  2. J.T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
    [Crossref] [PubMed]
  3. J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
    [Crossref]
  4. J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. coupling to a whisperinggallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
    [Crossref]
  5. L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
    [Crossref] [PubMed]
  6. L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
    [Crossref]
  7. Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
    [Crossref]
  8. L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
    [Crossref]
  9. Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
    [Crossref]
  10. H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
    [Crossref]
  11. J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
    [Crossref]
  12. T.S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A 78, 063832 (2008).
    [Crossref]
  13. T.S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A 80, 033823 (2009).
    [Crossref]
  14. D Witthaut and A.S. Søensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
    [Crossref]
  15. C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
    [Crossref]
  16. Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
    [Crossref] [PubMed]
  17. L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
    [Crossref]
  18. M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
    [Crossref] [PubMed]
  19. Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
    [Crossref]
  20. L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
    [Crossref]
  21. J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
    [Crossref]
  22. J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
    [Crossref]
  23. N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 245115 (2003).
    [Crossref]
  24. T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
    [Crossref]
  25. E. Bulgakov and A. Sadreev, “Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities,” Phys. Rev. B 84, 155304 (2011).
    [Crossref]
  26. I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
    [Crossref]
  27. I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108–111 (2009).
    [Crossref] [PubMed]
  28. I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
    [Crossref]
  29. J.Q. You and F. Nori, “Superconducting circuits and quantum information,” Physics Today 58 (11), 42–47 (2005).
    [Crossref]
  30. J.Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
    [Crossref] [PubMed]
  31. Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
    [Crossref]
  32. K.G. Makris and D.N. Christodoulides, “Method of images in optical discrete systems,” Phys. Rev. E 73, 036616 (2006).
    [Crossref]

2014 (4)

Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
[Crossref]

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
[Crossref]

2013 (2)

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

2012 (2)

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
[Crossref] [PubMed]

2011 (5)

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

E. Bulgakov and A. Sadreev, “Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities,” Phys. Rev. B 84, 155304 (2011).
[Crossref]

I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
[Crossref]

J.Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref] [PubMed]

2010 (2)

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

D Witthaut and A.S. Søensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

2009 (6)

T.S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A 80, 033823 (2009).
[Crossref]

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. coupling to a whisperinggallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108–111 (2009).
[Crossref] [PubMed]

2008 (5)

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

H.J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

T.S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A 78, 063832 (2008).
[Crossref]

2006 (1)

K.G. Makris and D.N. Christodoulides, “Method of images in optical discrete systems,” Phys. Rev. E 73, 036616 (2006).
[Crossref]

2005 (3)

J.Q. You and F. Nori, “Superconducting circuits and quantum information,” Physics Today 58 (11), 42–47 (2005).
[Crossref]

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

J.T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref] [PubMed]

2003 (1)

N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 245115 (2003).
[Crossref]

2000 (1)

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

Albert, J.P.

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

Ashhab, S.

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
[Crossref]

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
[Crossref]

Bertho, D.

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

Bradford, M.

M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
[Crossref] [PubMed]

Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Bulgakov, E.

E. Bulgakov and A. Sadreev, “Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities,” Phys. Rev. B 84, 155304 (2011).
[Crossref]

Buluta, I.

I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
[Crossref]

I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108–111 (2009).
[Crossref] [PubMed]

Cassagne, D.

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

Chang, Y.

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

Christodoulides, D.N.

K.G. Makris and D.N. Christodoulides, “Method of images in optical discrete systems,” Phys. Rev. E 73, 036616 (2006).
[Crossref]

Dong, H.

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

Fan, S.

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. coupling to a whisperinggallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

J.T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref] [PubMed]

Georgescu, I. M.

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
[Crossref]

Gong, Z.R.

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Gopalan, V.

N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 245115 (2003).
[Crossref]

Herrle, T.

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

Ian, H.

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

Jia, W.-Z.

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

Jouanin, C.

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

Kimble, H.J.

H.J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

Kuang, L.M.

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

Law, C. K.

T.S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A 80, 033823 (2009).
[Crossref]

T.S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A 78, 063832 (2008).
[Crossref]

Li, Q.

Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
[Crossref]

Li, Y.

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

Liao, J.Q.

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

Liu, Y.X.

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

Liu, Y.-x.

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Liu, Yu-xi

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

Lu, J.

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

Makris, K.G.

K.G. Makris and D.N. Christodoulides, “Method of images in optical discrete systems,” Phys. Rev. E 73, 036616 (2006).
[Crossref]

Malkova, N.

N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 245115 (2003).
[Crossref]

Nori, F.

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
[Crossref]

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

J.Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref] [PubMed]

I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
[Crossref]

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108–111 (2009).
[Crossref] [PubMed]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

J.Q. You and F. Nori, “Superconducting circuits and quantum information,” Physics Today 58 (11), 42–47 (2005).
[Crossref]

Obi, K.C.

M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
[Crossref] [PubMed]

Pindl, M.

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

Sadreev, A.

E. Bulgakov and A. Sadreev, “Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities,” Phys. Rev. B 84, 155304 (2011).
[Crossref]

Schmult, S.

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

Schwarz, U.T.

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

Shen, J.T.

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. coupling to a whisperinggallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

J.T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref] [PubMed]

Shen, J.-T.

M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
[Crossref] [PubMed]

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Shen, Y.-C.

Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Søensen, A.S.

D Witthaut and A.S. Søensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

Sun, C. P.

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

Sun, C.P.

Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
[Crossref]

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

Tsoi, T.S.

T.S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A 80, 033823 (2009).
[Crossref]

T.S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A 78, 063832 (2008).
[Crossref]

Wang, Z.H.

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

Wegscheider, W.

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

Wei, L.-F.

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

Witthaut, D

D Witthaut and A.S. Søensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

Xiang, Z.L.

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Yan, C.-H.

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

Yang, L.P.

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

Yang, S.

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

You, J.Q.

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

J.Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref] [PubMed]

J.Q. You and F. Nori, “Superconducting circuits and quantum information,” Physics Today 58 (11), 42–47 (2005).
[Crossref]

Zhou, L.

Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

Nature (1)

J.Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature 474, 589–597 (2011).
[Crossref] [PubMed]

Nature (London) (1)

H.J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[Crossref]

New J. Phys. (1)

D Witthaut and A.S. Søensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New J. Phys. 12, 043052 (2010).
[Crossref]

Phys. Rev. A (14)

C.-H. Yan, L.-F. Wei, W.-Z. Jia, and J.-T. Shen, “Controlling resonant photonic transport along optical waveguides by two-level atoms,” Phys. Rev. A 84, 045801 (2011).
[Crossref]

L. Zhou, Y. Chang, H. Dong, L.M. Kuang, and C.P. Sun, “Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension,” Phys. Rev. A 85, 013806 (2012).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009).
[Crossref]

J.T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. coupling to a whisperinggallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009).
[Crossref]

L. Zhou, S. Yang, Yu-xi Liu, C.P. Sun, and F. Nori, “Quantum zeno switch for single-photon coherent transport,” Phys. Rev. A 80, 062109 (2009).
[Crossref]

Q. Li, L. Zhou, and C.P. Sun, “Waveguide quantum electrodynamics: controllable channel from quantum interference,” Phys. Rev. A 89, 063810 (2014).
[Crossref]

L. Zhou, H. Dong, Y.-x. Liu, C.P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008).
[Crossref]

Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism,” Phys. Rev. A 78, 053806 (2008).
[Crossref]

H. Dong, Z.R. Gong, H. Ian, L. Zhou, and C.P. Sun, “Intrinsic cavity QED and emergent quasinormal modes for a single photon,” Phys. Rev. A 79, 063847 (2009).
[Crossref]

J.Q. Liao, Z.R. Gong, L. Zhou, Y.X. Liu, C.P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010).
[Crossref]

T.S. Tsoi and C. K. Law, “Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide,” Phys. Rev. A 78, 063832 (2008).
[Crossref]

T.S. Tsoi and C. K. Law, “Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide,” Phys. Rev. A 80, 033823 (2009).
[Crossref]

J. Lu, L. Zhou, L.M. Kuang, and F. Nori, “Single-photon router: Coherent control of multichannel scattering for single photons with quantum interferences,” Phys. Rev. A 89, 013805 (2014).
[Crossref]

Z.H. Wang, L. Zhou, Y. Li, and C. P. Sun, “Controllable single-photon frequency converter via a one-dimensional waveguide,” Phys. Rev. A 89, 053813 (2014).
[Crossref]

Phys. Rev. B (4)

J.P. Albert, C. Jouanin, D. Cassagne, and D. Bertho, “Generalized Wannier function method for photonic crystals,” Phys. Rev. B 61, 4381–4384 (2000).
[Crossref]

N. Malkova and V. Gopalan, “Strain-tunable optical valves at T-junction waveguides in photonic crystals,” Phys. Rev. B 68, 245115 (2003).
[Crossref]

T. Herrle, S. Schmult, M. Pindl, U.T. Schwarz, and W. Wegscheider, “T-shaped waveguides for quantum-wire intersubband lasers,” Phys. Rev. B 72, 035316 (2005).
[Crossref]

E. Bulgakov and A. Sadreev, “Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities,” Phys. Rev. B 84, 155304 (2011).
[Crossref]

Phys. Rev. E (1)

K.G. Makris and D.N. Christodoulides, “Method of images in optical discrete systems,” Phys. Rev. E 73, 036616 (2006).
[Crossref]

Phys. Rev. Lett. (5)

L. Zhou, L.P. Yang, Y. Li, and C.P. Sun, “Quantum routing of single photons with a cyclic three-level system,” Phys. Rev. Lett. 111, 103604 (2013).
[Crossref]

L. Zhou, Z.R. Gong, Y.-x. Liu, C.P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008).
[Crossref] [PubMed]

J.T. Shen and S. Fan, “Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits,” Phys. Rev. Lett. 95, 213001 (2005).
[Crossref] [PubMed]

M. Bradford, K.C. Obi, and J.-T. Shen, “Efficient single-photon frequency conversion using a sagnac interferometer,” Phys. Rev. Lett. 108, 103902 (2012).
[Crossref] [PubMed]

Y.-C. Shen, M. Bradford, and J.-T. Shen, “Single-photon diode by exploiting the photon polarization in a waveguide,” Phys. Rev. Lett. 107, 173902 (2011).
[Crossref] [PubMed]

Physics Today (1)

J.Q. You and F. Nori, “Superconducting circuits and quantum information,” Physics Today 58 (11), 42–47 (2005).
[Crossref]

Reports on Progress in Physics (1)

I. Buluta, S. Ashhab, and F. Nori, “Natural and artificial atoms for quantum computation,” Reports on Progress in Physics 74104401 (2011).
[Crossref]

Rev. Mod. Phys. (2)

I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulators,” Rev. Mod. Phys. 86, 153–185 (2014).
[Crossref]

Z.L. Xiang, S. Ashhab, J.Q. You, and F. Nori, “Hybrid quantum circuits: superconducting circuits interacting with other quantum systems,” Rev. Mod. Phys. 85, 623–653 (2013).
[Crossref]

Science (1)

I. Buluta and F. Nori, “Quantum simulators,” Science 326, 108–111 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic view of quantum routing of single photons in two channels made of one infinite and one semi-infinite CRWs. The two-level atom characterized by |g〉, |e〉 is placed at the cross point ja = 0 and jb = 1. CRW-a (-b) couples to the atom through the transition |g〉 ↔ |e〉 with strength ga (gb). There is no interaction among the ja = 0 and jb = 1 cavities

Fig. 2
Fig. 2

The probability for finding single photons. (a) The transmission T a a ( E ) (blue line), reflection R a a (red line) T a b ( E ) (black line) as a function of the incident energy E, where the parameters are set as follow: ωA = 9 for solid line, ωA = 10 for dashed line, ωA = 11.3 for dotted line, and the coupling strength ga = gb = 0.3, (b) The coefficient R a a ( E ) + T a a ( E ) (blue line), T a b ( E ) (red line) as a function of the atomic energy splitting ωA, where the parameters are set as follow: ga = gb = 0.15, E = 10 2 for solid line, ga = gb = 0.3, E = 10 for dotted line, ga = gb = 0.25, E = 10 + 2 for dashed line. All the parameters are in units of ξ, and we always set ω = 10. The arrows in (a) indicate the position of the incident energy E of the solid, dashed and dotted lines in (b).

Fig. 3
Fig. 3

The probabilities for finding single photons in the CRW-a (blue line) and the CRW-b (red line). (a) The probabilities as a function of the incident energy E. The parameters are the same in Fig. 2(a). (b) The coefficient T b a ( E ) as a function of the atomic energy splitting ωA, The parameters are the same in Fig. 2(b).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

H C = d = a , b j d [ ω d d j d d j d ξ d ( d j d d j d + 1 + h . c . ) ] ,
H A = ω A | e e |
H A C = g a σ + a 0 + g b σ + b 1 + h . c .
E k d = ω d 2 ξ d cos k d
| E = d = a , b j d = + U j d [ d ] d j d | g 0 + U e | e 0 ,
EU j [ a ] = ω a U j [ a ] ξ a ( U j 1 [ a ] + U j + 1 [ a ] ) + g a U e δ j 0
EU j [ b ] = ω b U j [ b ] ξ b ( U j 1 [ b ] + U j + 1 [ b ] ) + δ j 1 g b U e
EU e = ω A U e + g a U 0 [ a ] + g b U d [ b ]
( E ω a ) U j [ a ] = ξ a ( U j 1 [ a ] + U j + 1 [ a ] ) + δ j 0 [ V a ( E ) U 0 [ a ] + G ( E ) U 1 [ b ] ]
( E ω b ) U 1 [ b ] = ξ b U 2 [ b ] + G ( E ) U 0 [ a ] + V b ( E ) U 1 [ b ]
( E ω b ) U j [ b ] = ξ b ( U j 1 [ b ] + U j + 1 [ b ] ) ( j 2 ) .
U j a [ a ] = { e i k j a + r e i k j a , j a < 0 t e i k j a , j a > 0
U j b [ b ] = { t b e i k j b , j b > 1 A sin k j b , j b = 1
t = v g ( E ω A ) + sin ( 2 k ) g b 2 + i 2 g b 2 sin 2 k v g ( E ω A ) + g b 2 sin ( 2 k ) + i ( g a 2 + 2 g b 2 sin 2 k ) ,
t b = 2 g a g b sin k v g ( E ω A ) + g b 2 sin ( 2 k ) + i ( g a 2 + 2 g b 2 sin 2 k ) ,
U j a [ a ] = { t l a e i k j a , j a < 0 t r a e i k j a , j a > 0
U 1 [ b ] = A sin k , j b = 1
U j b [ b ] = e i k j b + r b e i k j b , j b > 1 ,
t a = 2 g a g b sin k v g ( E ω A ) + g b 2 sin ( 2 k ) + i ( 2 g b 2 sin 2 k + g a 2 ) ,
r b = v g ( E ω A + g b 2 ξ e i k ) + i g a 2 v g ( E ω A + g b 2 ξ e i k ) + i g a 2 .

Metrics