Abstract

A new strategy to obtain multicolor lasing from cholesteric liquid crystals is presented. A four layer cell is prepared with three different cholesteric layers and a layer containing a photoluminescent dye. The three cholesteric mixtures are prepared so that their photonic band gaps are partially overlapped. Through this combination, two laser lines are obtained in the same spot under the pumping beam irradiation. Eventually, one of the laser lines can be switched off if an electric field is applied to the first or the last cholesteric layer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi
Opt. Express 17(6) 4553-4558 (2009)

Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector

Ying Zhou, Yuhua Huang, and Shin-Tson Wu
Opt. Express 14(9) 3906-3916 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. Chilaya, “Induction of chirality in nematic phases,” Rev. Phys. Appl. (Paris) 16(5), 193–208 (1981).
    [Crossref]
  2. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
    [Crossref]
  3. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
    [Crossref] [PubMed]
  4. Y. Wang and Q. Li, “Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
    [Crossref] [PubMed]
  5. I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
    [Crossref]
  6. J. C. Lee, S. D. Jacobs, T. Gunderman, A. Schmid, T. J. Kessler, and M. D. Skeldon, “TEM00-Mode and single-longitudinal-mode laser operation with a Cholesteric liquid-crystal laser end mirror,” Opt. Lett. 15(17), 959–961 (1990).
    [Crossref] [PubMed]
  7. L. S. Goldberg and J. M. Schnur, “Tunable internal-feedback liquid crystal dye laser,” US Patent No 3,771,065. 1973.
  8. N. V. Kukhtarev, “Cholesteric liquid crystal laser with distributed feedback,” Sov. J. Quantum Electron. 8(6), 774–776 (1978).
    [Crossref]
  9. H. Takezoe, Liquid crystals beyond displays: chemistry, physics, and applications (John Wiley & Sons, 2012), Chap. 1.
  10. I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).
  11. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
    [Crossref]
  12. G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
    [Crossref] [PubMed]
  13. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).
  14. A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
    [Crossref]
  15. Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
    [Crossref]
  16. L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
    [Crossref] [PubMed]
  17. L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
    [Crossref]
  18. H. K. Bisoyi and Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
    [Crossref] [PubMed]
  19. D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
    [Crossref]
  20. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  21. D. Lande, J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Digital wavelength-multiplexed holographic data storage system,” Opt. Lett. 21(21), 1780–1782 (1996).
    [Crossref] [PubMed]

2014 (3)

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

2012 (3)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Y. Wang and Q. Li, “Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

2010 (2)

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

2009 (1)

2008 (1)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

2006 (1)

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

2005 (1)

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

2004 (1)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

1996 (1)

1990 (1)

1981 (1)

G. Chilaya, “Induction of chirality in nematic phases,” Rev. Phys. Appl. (Paris) 16(5), 193–208 (1981).
[Crossref]

1980 (1)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

1978 (2)

N. V. Kukhtarev, “Cholesteric liquid crystal laser with distributed feedback,” Sov. J. Quantum Electron. 8(6), 774–776 (1978).
[Crossref]

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Barberi, R.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[Crossref] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Bashaw, M. C.

Bass, M.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

Bisoyi, H. K.

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Bricker, R. L.

Bunning, T. J.

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Chen, L.

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Chilaya, G.

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[Crossref] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

G. Chilaya, “Induction of chirality in nematic phases,” Rev. Phys. Appl. (Paris) 16(5), 193–208 (1981).
[Crossref]

Cipparrone, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

Collings, P.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

De Santo, M. P.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[Crossref] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Dong, H.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Fan, J.

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Fujii, A.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Green, L.

Gunderman, T.

Heanue, J. F.

Hesselink, L.

Huang, Y.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

Il’chishin, I. P.

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Ilchishin, I. P.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Inoue, Y.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Jacobs, S. D.

Karnutsch, C.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Kessler, T. J.

Kostovski, G.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Kukhtarev, N. V.

N. V. Kukhtarev, “Cholesteric liquid crystal laser with distributed feedback,” Sov. J. Quantum Electron. 8(6), 774–776 (1978).
[Crossref]

Lande, D.

Lee, J. C.

Li, Q.

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

H. K. Bisoyi and Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Y. Wang and Q. Li, “Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, L. Green, Q. Li, and T. J. Bunning, “Electrically switchable, photoaddressable cholesteric liquid crystal reflectors,” Opt. Express 18(1), 173–178 (2010).
[Crossref] [PubMed]

Li, Y.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Matranga, M. A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[Crossref] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Matsuhisa, Y.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Mazzulla, A.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

Mitchell, A.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Moritake, H.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Natarajan, L. V.

Ozaki, M.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Ozaki, R.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Petriashvili, G.

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

G. Petriashvili, M. A. Matranga, M. P. De Santo, G. Chilaya, and R. Barberi, “Wide band gap materials as a new tuning strategy for dye doped cholesteric liquid crystals laser,” Opt. Express 17(6), 4553–4558 (2009).
[Crossref] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Rapaport, A.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

Schmid, A.

Sellame, H.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

Shpak, M. T.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Skeldon, M. D.

Sun, L. D.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Tikhonov, E. A.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Tishchenko, V. G.

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Tondiglia, V. P.

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Wang, L.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang and Q. Li, “Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Weitz, D. A.

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

White, T. J.

Wu, S. T.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

Xue, C.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Yan, C. H.

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Yoshida, H.

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

Zhang, D.

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Zhou, Y.

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

Acc. Chem. Res. (1)

H. K. Bisoyi and Q. Li, “Light-Directing Chiral Liquid Crystal Nanostructures: From 1D to 3D,” Acc. Chem. Res. 47(10), 3184–3195 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Wang and Q. Li, “Light-Driven Chiral Molecular Switches or Motors in Liquid Crystals,” Adv. Mater. 24(15), 1926–1945 (2012).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Chen, Y. Li, J. Fan, H. K. Bisoyi, D. A. Weitz, and Q. Li, “Photoresponsive Monodisperse Cholesteric Liquid Crystalline Microshells for Tunable Omnidirectional Lasing Enabled by a Visible Light-Driven Chiral Molecular Switch,” Adv. Opt. Mater. 2(9), 845–848 (2014).
[Crossref]

Appl. Phys. Lett. (2)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

L. Wang, H. Dong, Y. Li, C. Xue, L. D. Sun, C. H. Yan, and Q. Li, “Reversible Near-Infrared Light Directed Reflection in a Self-Organized Helical Superstructure Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

JETP Lett. (1)

I. P. Ilchishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32, 24–27 (1980).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, “Electric filed dependence of lasing wavelength in cholesteric liquid crystal with an in-plane helix alignment,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 516(1), 182–189 (2010).
[Crossref]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, G. Cipparrone, A. Mazzulla, M. P. De Santo, H. Sellame, and M. A. Matranga, “Lasing in three layer systems consisting of cholesteric liquid crystals and dye solution,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 495(1), 97–105 (2008).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 123–140 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Org. Electron. (1)

D. Zhang, G. Kostovski, C. Karnutsch, and A. Mitchell, “Random lasing from dye doped polymer within biological source scatters: The pomponia imperatorial cicada wing random nanostructures,” Org. Electron. 13(11), 2342–2345 (2012).
[Crossref]

Rev. Phys. Appl. (Paris) (1)

G. Chilaya, “Induction of chirality in nematic phases,” Rev. Phys. Appl. (Paris) 16(5), 193–208 (1981).
[Crossref]

Soft Matter (1)

A. Mazzulla, G. Petriashvili, M. A. Matranga, M. P. De Santo, and R. Barberi, “Thermal and electrical laser tuning in liquid crystal blue phase I,” Soft Matter 8(18), 4882–4885 (2012).
[Crossref]

Sov. J. Quantum Electron. (2)

N. V. Kukhtarev, “Cholesteric liquid crystal laser with distributed feedback,” Sov. J. Quantum Electron. 8(6), 774–776 (1978).
[Crossref]

I. P. Il’chishin, E. A. Tikhonov, V. G. Tishchenko, and M. T. Shpak, “Tuning of the emission frequency of a dye laser with Bragg mirror in the form of a Cholesteric liquid crystal,” Sov. J. Quantum Electron. 8(12), 1487–1488 (1978).
[Crossref]

Other (2)

H. Takezoe, Liquid crystals beyond displays: chemistry, physics, and applications (John Wiley & Sons, 2012), Chap. 1.

L. S. Goldberg and J. M. Schnur, “Tunable internal-feedback liquid crystal dye laser,” US Patent No 3,771,065. 1973.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Transmission spectra of the three cholesteric layers: blue – CLC (1), green – CLC (2) and red – CLC (3). (b) Photoluminescence spectrum of Rhodamine 6G.

Fig. 2
Fig. 2

Scheme of the four layer cell.

Fig. 3
Fig. 3

PBGs of the cholesteric layers and laser lines intensities. The shorter wavelength laser peak on the violet line corresponds to the pumping light source, the other two laser lines with larger intensities correspond to the emission from the four layers sample cell. As expected, the emitted laser wavelengths are positioned where the edges of the PBGs overlap.

Fig. 4
Fig. 4

Laser emission from the four layer sample cell and picture of the two colors laser spot.

Fig. 5
Fig. 5

(a) transmission spectra of the CLC (3) varying the applied voltage. Lasing from the four layer cell at different electric voltages: 0V/μm (b), 5V/μm (c), and after 1 min from the removal of the electric field (d).

Metrics