Abstract

We report aluminum based structures for manipulation of surface plasmon polariton (SPP) propagation at short wavelength range. Our simulation shows that aluminum is a good metal to excite and propagate SPPs with blue light and that the SPP wavelength can be reduced from about 465 nm to about 265 nm by monitoring the thickness of a coated Si3N4 layer above the aluminum film. It is also shown that the damping becomes more significant with the increase of the thickness of the Si3N4 layer. We also experimentally demonstrated the SPP wavelength tuning effect for 20nm Si3N4 layer covered Al, which can be explained by the variation of effective permittivity. The proposed Metal-Insulator-Air (MIA) structures with SPP wavelength tuning ability have potential applications in 2D optics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric lens guides in-plane propagation of surface plasmon polaritons

Wen-Bo Shi, Tian-Yong Chen, Hao Jing, Ru-Wen Peng, and Mu Wang
Opt. Express 25(5) 5772-5780 (2017)

Observation of propagation of surface plasmon polaritons along line defects in a periodically corrugated metal surface

Sergey I. Bozhevolnyi, Valentyn S. Volkov, Kristjan Leosson, and John Erland
Opt. Lett. 26(10) 734-736 (2001)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  2. Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
    [Crossref]
  3. L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
    [Crossref] [PubMed]
  4. Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
    [Crossref]
  5. L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
    [Crossref]
  6. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  7. X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
    [Crossref]
  8. J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
    [Crossref]
  9. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  10. C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
    [Crossref]
  11. Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
    [Crossref] [PubMed]
  12. Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
    [Crossref] [PubMed]
  13. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
    [Crossref]
  14. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  15. Q. Wang, J. Bu, and X. C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
    [Crossref] [PubMed]
  16. B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
    [Crossref] [PubMed]
  17. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
    [Crossref] [PubMed]
  18. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
    [Crossref] [PubMed]
  19. W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
    [Crossref]
  20. K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
    [Crossref] [PubMed]
  21. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  22. A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
    [Crossref]
  23. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
    [Crossref]
  24. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  26. H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120(2), 295–300 (1973).
    [Crossref]
  27. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
    [Crossref]
  28. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [Crossref]

2014 (3)

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

2013 (7)

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

2012 (4)

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
[Crossref]

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

2011 (5)

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

2006 (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2004 (1)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

2003 (1)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

1998 (1)

1994 (1)

K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[Crossref] [PubMed]

1973 (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120(2), 295–300 (1973).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Anghinolfi, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Bartal, G.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Bian, H.

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Bisio, F.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Blau, Y.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Bu, J.

Canepa, M.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chang, K. J.

K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[Crossref] [PubMed]

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Dai, H.-L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

David, A.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Djurisic, A. B.

Dolev, S.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Elazar, J. M.

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giglia, A.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gjonaj, B.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Gonella, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Hua Zhang, D.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kawata, S.

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Kwong, D. L.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Lee, K.-H.

K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[Crossref] [PubMed]

Lei, D. Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Li, D.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Li, T.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Li, X.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
[Crossref]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Liow, T. Y.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

Liu, Y.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Liu, Z.

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Lo, G. Q.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

Luo, Y.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Maidecchi, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Maier, S. A.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Majewski, M. L.

Mattera, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Moroni, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Nannarone, S.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Orenstein, M.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Pendry, J. B.

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

Philipp, H. R.

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120(2), 295–300 (1973).
[Crossref]

Proietti Zaccaria, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Qin, F.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Rakic, A. D.

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Saito, Y.

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, X.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Spektor, G.

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

Su, W.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
[Crossref]

Taguchi, A.

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Teng, J.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tjahjana, L.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

Tobing, L. Y. M.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Wang, J.

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Q. Wang, J. Bu, and X. C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Wang, Y.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Watanabe, K.

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Xiong, Q.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Yan, C.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Yang, X.

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Yijian, S.

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, T.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X. C.

Yuan, X.-C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Zhang, D. H.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

Y. Wang, D. H. Zhang, J. Wang, X. Yang, D. Li, and Z. Xu, “Waveguide devices with homogeneous complementary media,” Opt. Lett. 36(19), 3855–3857 (2011).
[Crossref] [PubMed]

Zhang, D.-H.

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

Zhang, Q.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Zhang, X.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zheng, G.

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
[Crossref]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

ACS Nano (2)

Y. Luo, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Transformation-Optics Description of Plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding,” ACS Nano 6(7), 6492–6506 (2012).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

X. Yang, D. H. Zhang, Z. Xu, Y. Wang, and J. Wang, “Designing arbitrary nanoscale patterns by a nanocavity waveguide with omnidirectional illumination,” Appl. Phys. B 109(2), 215–219 (2012).
[Crossref]

Appl. Phys. Express (1)

Z. Xu, T. Li, D.-H. Zhang, C. Yan, D. Li, L. Y. M. Tobing, F. Qin, Y. Wang, X. Shen, and T. Yu, “Groove-structured metasurfaces for modulation of surface plasmon propagation,” Appl. Phys. Express 7(5), 052001 (2014).
[Crossref]

Appl. Phys. Lett. (5)

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Wang, F. Qin, D. Hua Zhang, D. Li, Y. Wang, X. Shen, T. Yu, and J. Teng, “Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate,” Appl. Phys. Lett. 102(6), 061103 (2013).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

A. Taguchi, Y. Saito, K. Watanabe, S. Yijian, and S. Kawata, “Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures,” Appl. Phys. Lett. 101(8), 081110 (2012).
[Crossref]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98(2), 021107 (2011).
[Crossref]

J. Electrochem. Soc. (1)

H. R. Philipp, “Optical properties of silicon nitride,” J. Electrochem. Soc. 120(2), 295–300 (1973).
[Crossref]

J. Opt. (1)

C. Yan, D. H. Zhang, D. Li, H. Bian, Z. Xu, and Y. Wang, “Metal nanorod-based metamaterials for beam splitting and a subdiffraction-limited dark hollow light cone,” J. Opt. 13(8), 085102 (2011).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A, Pure Appl. Opt. 5(4), S16–S50 (2003).
[Crossref]

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Light Sci. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2(3), e70 (2013).
[Crossref]

Nano Lett. (2)

B. Gjonaj, A. David, Y. Blau, G. Spektor, M. Orenstein, S. Dolev, and G. Bartal, “Sub-100 nm focusing of short wavelength plasmons in homogeneous 2D space,” Nano Lett. 14(10), 5598–5602 (2014).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Su, G. Zheng, and X. Li, “Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating,” Opt. Commun. 285(21-22), 4603–4607 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

K.-H. Lee and K. J. Chang, “First-principles study of the optical properties and the dielectric response of Al,” Phys. Rev. B Condens. Matter 49(4), 2362–2367 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107(12), 126804 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep. 3, 2437 (2013).
[Crossref] [PubMed]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic diagram of an aluminium based MIA structure. (b) Simulated Ez of the MIA structure consisting of 80nm Aluminium film and Air at z-y plane. (c) Simulated Ez of the MIA structure consisting of 80nm Aluminium film, 40nm Si3N4 film and Air at z-y plane. (d) Ez distributions in x-y plane at Si3N4/Air interface of the MIA structures with different thicknesses of Si3N4 layer above the 80nm Al film. The dashed straight lines are used to indicate the wavefronts of SPPs of the MIA structures.
Fig. 2
Fig. 2 (a) Damping of electric field Ez at Si3N4/Air interface of the MIA structures consisting of 80nm aluminium film and varied thickness of Si3N4 film. (b) SPP wavelength (circle), effective refraction index neff (triangle) and decay rate (cross) as a function of thickness t of Si3N4 film. Here, neff approximately follows a polynomial relation, neff = 1.01 + 0.0021t + 1.81 × 10−4t2.
Fig. 3
Fig. 3 Schematic of (a) 80-nm thick aluminium film on quartz substrate (Sample 1), and (b) 20-nm thick Si3N4/80-nm thick Al on quartz substrate (Sample 2). The SEM images of these samples integrated with grating coupler: (c) Sample 1, and (d) Sample 2.
Fig. 4
Fig. 4 Ez distributions in x-y plane of (a) sample 1 and (b) sample 2 for y polarized incidence. NSOM images of (c) sample 1 and (d) sample 2. The dashed arrows in (a) and (b) denote the direction of linear polarization.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ spp λ 0 ε d + ε m ' ε d ε m '
λ SPP λ 0 ( ε d ) 1/2
δ m = 1 k 0 | ε ' m + ε d ε ' m 2 | 1 2 , δ d = 1 k 0 | ε ' m + ε d ε d 2 | 1 2
δ m 1 k 0 ε d | ε ' m | , δ d 1 k 0 | ε ' m | ε d
E z (y)= E z0 e i k y ' y e k y '' y = E z0 e i k y ' y e α SPP y

Metrics