Abstract

Dual-cavity microstructure fiber optic hydrogen sensor based on evaporated Pt/WO3 film was proposed and experimentally explored in this paper, which provides a novel solution to detect high hydrogen concentration (10-30% H2). Dual-cavity microstructure fabricated by splicer is composed of an inner air-cavity and a collapsed photonic crystal fiber cavity. The proposed sensor has the advantages of miniature structure, stable configuration, low cost. Based on three-beam interference model and verification experiments, the compensation function to the fluctuation of light source and fiber loss is proved from the theoretical simulation and experimental investigation. The sensor has a short response time (1min), good repeatability and reliability. Besides, the change of temperature affects the response value of the hydrogen sensor, but the impact can be neglected in 10-30% H2.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

Microstructured FBG hydrogen sensor based on Pt-loaded WO3

Xian Zhou, Yutang Dai, Joseph Muna Karanja, Fufei Liu, and Minghong Yang
Opt. Express 25(8) 8777-8786 (2017)

High-sensitivity fiber optic hydrogen sensor in air by optimizing a self-referenced demodulating method

Minghong Yang, Yuhuan Qin, Yaqiang Ma, Gaopeng Wang, Feng Xiang, Min Wang, Jixiang Dai, Zhigao Chen, Jiening Xia, and Li Zhou
Appl. Opt. 57(27) 8011-8015 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys. 64(7), 3706–3711 (1988).
    [Crossref]
  2. M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett. 37(11), 1940–1942 (2012).
    [Crossref] [PubMed]
  3. R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
    [Crossref]
  4. J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
    [Crossref]
  5. V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
    [Crossref]
  6. M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
    [Crossref]
  7. F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
    [Crossref]
  8. J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
    [Crossref]
  9. M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
    [Crossref]
  10. M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
    [Crossref]
  11. N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, and P. Shum, “Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating,” J. Lightwave Technol. 21(6), 1568–1575 (2003).
    [Crossref]
  12. Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
    [Crossref] [PubMed]
  13. L. Cui, Y. Chen, and G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Opt. Lett. 5(3), 220–223 (2009).
    [Crossref]
  14. Y. Zhang, S. L. Qi, and Z. Zhuang, “Fiber optic hydrogen sensor resisting temperature interference,” Proc. SPIE 7753, 775369 (2011).
    [Crossref]
  15. C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
    [Crossref]
  16. Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt. 49(15), 2736–2740 (2010).
    [Crossref] [PubMed]
  17. K. S. Park, Y. H. Kim, J. B. Eom, S. J. Park, M. S. Park, J. H. Jang, and B. H. Lee, “Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique,” Opt. Express 19(19), 18190–18198 (2011).
    [Crossref] [PubMed]
  18. G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).
  19. Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
    [Crossref]
  20. Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
    [Crossref]
  21. R. Ghosh, M. B. Baker, and R. Lopez, “Optical properties and aging of gasochromic WO3,” Thin Solid Films 518(8), 2247–2249 (2010).
    [Crossref]
  22. A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
    [Crossref]
  23. M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
    [Crossref]
  24. G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
    [Crossref] [PubMed]
  25. Y.-H. Kim, M.-J. Kim, M.-S. Park, J.-H. Jang, B.-H. Lee, and K.-T. Kim, “Hydrogen sensor based on a palladium-coated long-period fiber grating pair,” J. Opt. Soc. Korea 12(4), 221–225 (2008).
    [Crossref]

2015 (2)

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

2014 (3)

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

2013 (2)

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).

2012 (5)

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett. 37(11), 1940–1942 (2012).
[Crossref] [PubMed]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (3)

M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
[Crossref]

M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
[Crossref]

L. Cui, Y. Chen, and G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Opt. Lett. 5(3), 220–223 (2009).
[Crossref]

2008 (1)

2006 (1)

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

2004 (1)

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

2003 (1)

2000 (1)

A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
[Crossref]

1988 (1)

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys. 64(7), 3706–3711 (1988).
[Crossref]

Baker, M. B.

R. Ghosh, M. B. Baker, and R. Lopez, “Optical properties and aging of gasochromic WO3,” Thin Solid Films 518(8), 2247–2249 (2010).
[Crossref]

Breedon, M.

M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
[Crossref]

Buric, M.

M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
[Crossref]

Butler, M. A.

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys. 64(7), 3706–3711 (1988).
[Crossref]

Cao, K.

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Chen, T.

M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
[Crossref]

Chen, Y.

L. Cui, Y. Chen, and G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Opt. Lett. 5(3), 220–223 (2009).
[Crossref]

Chen, Y. P.

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

Cheng, J.

Cui, L.

L. Cui, Y. Chen, and G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Opt. Lett. 5(3), 220–223 (2009).
[Crossref]

Dai, J.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett. 37(11), 1940–1942 (2012).
[Crossref] [PubMed]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Dai, Y.

G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).

Dam, B.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Datz, M.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

Ding, W.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

Ell, J.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

Eom, J. B.

Gao, R.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

Georg, A.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
[Crossref]

Gheorghe, D. G.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Ghosh, R.

R. Ghosh, M. B. Baker, and R. Lopez, “Optical properties and aging of gasochromic WO3,” Thin Solid Films 518(8), 2247–2249 (2010).
[Crossref]

Ginley, D. S.

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys. 64(7), 3706–3711 (1988).
[Crossref]

Graf, W.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
[Crossref]

Hu, W.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Huang, C.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Huang, P.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Jang, J. H.

Jang, J.-H.

Jiang, J.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Jiang, Y.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

Jung, H.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Kalantar, Z. K.

M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
[Crossref]

Kim, K.-T.

Kim, M.-J.

Kim, W.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Kim, Y. H.

Kim, Y.-H.

Leclercq, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Lee, B. H.

Lee, B.-H.

Lee, J.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Lee, S. H.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Lee, W.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Li, C. R.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Li, Q.

Li, S. Y.

Li, Z.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Liao, J.

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Liao, Y.

Liu, Y.

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

Lopez, R.

R. Ghosh, M. B. Baker, and R. Lopez, “Optical properties and aging of gasochromic WO3,” Thin Solid Films 518(8), 2247–2249 (2010).
[Crossref]

Lu, Y.-Q.

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Luo, W.

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Luo, Y. T.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Ma, G. M.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Mak, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Maklad, M.

M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
[Crossref]

Montalvo, J.

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

Montero, D. S.

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

Mooij, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Neumann, R.

A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
[Crossref]

Ngo, N. Q.

Noh, J. S.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Park, K. S.

Park, M. S.

Park, M.-S.

Park, S. J.

Pena, J. M. S.

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

Polak, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Qi, S. L.

Y. Zhang, S. L. Qi, and Z. Zhuang, “Fiber optic hydrogen sensor resisting temperature interference,” Proc. SPIE 7753, 775369 (2011).
[Crossref]

Qiu, S. J.

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Radeva, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Rasing, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Rooijmans, J. S. A.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Shum, P.

Slaman, M.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Song, B.

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

Song, H.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

Song, H. T.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Tang, J.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Tian, Q.

Tjin, S. C.

Vazquez, C.

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

Walze, G.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

Wang, D. N.

Wang, G.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Wang, H. B.

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Wang, M.

Wang, Y.

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Wang, Z.

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

Westerwaal, R. J.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

Wittwer, V.

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

Xu, F.

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Yaacob, M. H.

M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
[Crossref]

Yang, M.

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett. 37(11), 1940–1942 (2012).
[Crossref] [PubMed]

M. Wang, M. Yang, J. Cheng, J. Dai, M. Yang, and D. N. Wang, “Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing,” Opt. Lett. 37(11), 1940–1942 (2012).
[Crossref] [PubMed]

Yang, Z.

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt. 49(15), 2736–2740 (2010).
[Crossref] [PubMed]

Yu, X.

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Zhang, D.

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

Zhang, G.

G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

L. Cui, Y. Chen, and G. Zhang, “An optical fiber hydrogen sensor with Pd/Ag film,” Opt. Lett. 5(3), 220–223 (2009).
[Crossref]

Zhang, M.

Zhang, Y.

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Y. Zhang, S. L. Qi, and Z. Zhuang, “Fiber optic hydrogen sensor resisting temperature interference,” Proc. SPIE 7753, 775369 (2011).
[Crossref]

Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt. 49(15), 2736–2740 (2010).
[Crossref] [PubMed]

Zheng, R. T.

Zhou, F.

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Zhuang, Z.

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Y. Zhang, S. L. Qi, and Z. Zhuang, “Fiber optic hydrogen sensor resisting temperature interference,” Proc. SPIE 7753, 775369 (2011).
[Crossref]

Z. Yang, M. Zhang, Y. Liao, Q. Tian, Q. Li, Y. Zhang, and Z. Zhuang, “Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system,” Appl. Opt. 49(15), 2736–2740 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

G. Zhang, M. Yang, and Y. Dai, “Fabry-Perot fiber tip sensor based on an inner air-cavity for refractive index sensing,” Chin. Opt. Lett. S11202, 12 (2013).

IEEE Photonics Technol. Lett. (3)

Z. Wang, Y. Jiang, W. Ding, and R. Gao, “A white-light interferometry for the measurement of high-finesse fiber optic EFPI sensors,” IEEE Photonics Technol. Lett. 26(21), 2138–2141 (2014).
[Crossref]

M. Buric, T. Chen, M. Maklad, and et al.., “Multiplexable low-temperature fiber Bragg grating hydrogen sensors,” IEEE Photonics Technol. Lett. 21(21), 1594–1596 (2009).
[Crossref]

C. Vazquez, J. Montalvo, D. S. Montero, and J. M. S. Pena, “Self-referencing fiber-optic intensity sensor using ring resonators and fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(22), 2374–2376 (2006).
[Crossref]

IEEE Sens. J. (1)

F. Zhou, S. J. Qiu, W. Luo, F. Xu, and Y.-Q. Lu, “An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer,” IEEE Sens. J. 14(4), 1133–1136 (2014).
[Crossref]

Int. J. Hydrogen Energy (2)

J. Lee, J. S. Noh, S. H. Lee, B. Song, H. Jung, W. Kim, and W. Lee, “Cracked palladium films on an elastomeric substrate for useas hydrogen sensors,” Int. J. Hydrogen Energy 37(9), 7934–7939 (2012).
[Crossref]

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201 (2013).
[Crossref]

J. Appl. Phys. (1)

M. A. Butler and D. S. Ginley, “Hydrogen sensing with palladium-coated optical fibers,” J. Appl. Phys. 64(7), 3706–3711 (1988).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Korea (1)

Meas. Sci. Technol. (1)

M. Yang, G. Wang, J. Dai, Z. Yang, Z. Li, Y. Wang, Y. Zhang, and Z. Zhuang, “Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm,” Meas. Sci. Technol. 25(11), 114004 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

Y. Zhang, S. L. Qi, and Z. Zhuang, “Fiber optic hydrogen sensor resisting temperature interference,” Proc. SPIE 7753, 775369 (2011).
[Crossref]

Rev. Sci. Instrum. (2)

G. M. Ma, J. Jiang, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers,” Rev. Sci. Instrum. 86(4), 045003 (2015).
[Crossref] [PubMed]

Y. Liu, Y. P. Chen, H. Song, and G. Zhang, “Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film,” Rev. Sci. Instrum. 83(7), 075001 (2012).
[Crossref] [PubMed]

Sens. Actuators B Chem. (4)

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

M. H. Yaacob, M. Breedon, and Z. K. Kalantar, “Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2,” Sens. Actuators B Chem. 137(1), 115–120 (2009).
[Crossref]

M. Yang, Z. Yang, J. Dai, and D. Zhang, “Fiber optic hydrogen sensors with sol-gel WO3 coatings,” Sens. Actuators B Chem. 166-167, 632–636 (2012).
[Crossref]

Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, “Optical fiber hydrogen sensor based on evaporated Pt/WO3 film,” Sens. Actuators B Chem. 1(206), 564–569 (2015).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, “Gasochromic windows,” Sol. Energy Mater. Sol. Cells 84(1-4), 305–314 (2004).
[Crossref]

Solid State Ion. (1)

A. Georg, W. Graf, and R. Neumann, “Mechanism of the gasochromic coloration of porous WO3 film,” Solid State Ion. 127(3-4), 319–328 (2000).
[Crossref]

Thin Solid Films (1)

R. Ghosh, M. B. Baker, and R. Lopez, “Optical properties and aging of gasochromic WO3,” Thin Solid Films 518(8), 2247–2249 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic (a) and the physical map (b) of the sensor having a dual-cavity microstructure.
Fig. 2
Fig. 2 Configuration of hydrogen sensing experiment.
Fig. 3
Fig. 3 The theory model of dual-cavity.
Fig. 4
Fig. 4 Normalized reflection spectrum (a) and fast Fourier transform spectrum of the interference spectrum (b) when d1 = 12.24μm, d2 = 55.5μm, α1 = 0.4, α2 = 0.4; the measured reflective spectrum of the hydrogen sensor (c) and the fast Fourier transform spectrum (d).
Fig. 5
Fig. 5 SEM images of Pt/WO3 after hydrogen cycles (a) and XRD pattern of WO3 film (b).
Fig. 6
Fig. 6 The reflective spectrum of the hydrogen sensor (a) and the fast Fourier transform spectrum (b) in different hydrogen gas concentration.
Fig. 7
Fig. 7 Curve fitting response value of hydrogen sensor under different concentration.
Fig. 8
Fig. 8 (a) Fourier transform spectrum in the air with different light intensity. (b) The compensated amplitude in 0% and 13.89% H2 with different light intensity.
Fig. 9
Fig. 9 The reflective spectrum of the hydrogen sensor (a) and the response value of hydrogen cycle (b).
Fig. 10
Fig. 10 The ambient temperature sensitive properties of the sensing probe.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E r = E r 1 + E r 2 + E r 3 = r 01 E 0 +(1 α 1 ) t 01 r 12 t 10 E 0 e j4π n 1 d 1 /λ +(1 α 1 )(1 α 2 ) t 01 t 12 r 2g t 21 t 10 E 0 e j4π( n 1 d 1 + n 2 d 2 )/λ
R(λ)=( E r E 0 ) ( E r E 0 ) * = a 1 + a 2 + a 3 + a 4 a 1 = r 01 2 + ((1 α 1 ) t 01 r 12 t 10 ) 2 + ((1 α 1 )(1 α 2 ) t 01 t 12 r 2g t 21 t 10 ) 2 a 2 =2(1 α 1 ) r 01 t 01 r 12 t 10 cos( 4π n 1 d 1 λ ) a 3 =2 r 2g (1 α 1 ) 2 (1 α 2 ) r 12 t 01 2 t 12 t 21 t 10 2 cos( 4π n 2 d 2 λ ) a 4 =2 r 2g (1 α 1 )(1 α 2 ) r 01 t 01 t 12 t 21 t 10 cos( 4π( n 1 d 1 + n 2 d 2 ) λ )
4π n 1 d 1 /λ 4π n 1 d 1 λ/ λ 0 2
4π n 2 d 2 /λ4π n 2 d 2 λ/ λ 0 2
4π( n 1 d 1 + n 2 d 2 )/λ 4π( n 1 d 1 + n 2 d 2 )λ/ λ 0 2
R(w)=( E r E 0 ) ( E r E 0 ) * = b 1 + b 2 + b 3 + b 4 b 1 =2π[ r 01 2 + ((1 α 1 ) t 01 r 12 t 10 ) 2 + ((1 α 1 )(1 α 2 ) t 01 t 12 r 2g t 21 t 10 ) 2 ]δ(w) b 2 =2π(1 α 1 ) r 01 t 01 r 12 t 10 δ(w 4π n 1 d 1 λ 0 2 ) b 3 =2π r 2g (1 α 1 ) 2 (1 α 2 ) r 12 t 01 2 t 12 t 21 t 10 2 δ(w 4π n 2 d 2 λ 0 2 ) b 4 =2π r 2g (1 α 1 )(1 α 2 ) r 01 t 01 t 12 t 21 t 10 δ(w 4π( n 1 d 1 + n 2 d 2 ) λ 0 2 )
S c = S measured S 1

Metrics