Abstract

Optical current transducers (OCT) are indispensable for accurate monitoring of large electrical currents in an environment suffering from severe electromagnetic interference. Temperature dependence of OCTs caused by its components, such as wave plates and optical fibers, should be reduced to allow temperature-independent operation. A photonic crystal fiber with a structural optical birefringence was incorporated instead of a PM fiber, and a spun PM fiber was introduced to overcome the temperature-dependent linear birefringence of sensing fiber coil. Moreover, an integrated optic device that provides higher stability than fiber-optics was employed to control the polarization and detect the phase of the sensed optical signal. The proposed OCT exhibited much lower temperature dependence than that from a previous study. The OCT satisfied the 0.5 accuracy class (IIEC 60044-8) and had a temperature dependence less than ± 1% for a temperature range of 25 to 78 °C.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polymer waveguide integrated-optic current transducers

Min-Cheol Oh, Woo-Sung Chu, Kyung-Jo Kim, and Jun-Whee Kim
Opt. Express 19(10) 9392-9400 (2011)

Inherent temperature compensation of fiber-optic current sensors employing spun highly birefringent fiber

G. M. Müller, X. Gu, L. Yang, A. Frank, and K. Bohnert
Opt. Express 24(10) 11164-11173 (2016)

Design principle for sensing coil of fiber-optic current sensor based on geometric rotation effect

Chunxi Zhang, Chuansheng Li, Xiaxiao Wang, Lijing Li, Jia Yu, and Xiujuan Feng
Appl. Opt. 51(18) 3977-3988 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
    [Crossref]
  2. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
    [Crossref]
  3. R. Kondo and K. Kurosawa, “A method for improving temperature dependence of an optical fiber current sensor,” IEEE J Trans. Power Energy 130(4), 414–420 (2010).
    [Crossref]
  4. X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
    [Crossref]
  5. T. Kumagai, Y. Tottori, R. Miyata, and H. Kajioka, “Glucose sensor with a Sagnac interference optical system,” Appl. Opt. 53(4), 720–726 (2014).
    [Crossref] [PubMed]
  6. M.-C. Oh, W.-S. Chu, K.-J. Kim, and J.-W. Kim, “Polymer waveguide integrated-optic current transducers,” Opt. Express 19(10), 9392–9400 (2011).
    [Crossref] [PubMed]
  7. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
    [Crossref] [PubMed]
  8. B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
    [Crossref] [PubMed]
  9. W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
    [Crossref]
  10. J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
    [Crossref] [PubMed]
  11. J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
    [Crossref]
  12. J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
    [Crossref] [PubMed]
  13. G.-H. Huang, J.-W. Kim, W.-S. Chu, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Low-crosstalk high-density polymeric integrated optics incorporating self-assembled scattering monolayer,” Opt. Express 22(12), 14237–14245 (2014).
    [Crossref] [PubMed]
  14. D.-H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004).
    [Crossref] [PubMed]
  15. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
    [Crossref]
  16. G. Frosio and R. Dändliker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33(25), 6111–6122 (1994).
    [Crossref] [PubMed]
  17. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
    [Crossref]
  18. M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
    [Crossref]
  19. P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
    [Crossref]
  20. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  21. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
    [Crossref]
  22. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [Crossref]
  23. W.-S. Chu, S.-W. Heo, and M.-C. Oh, “Polymeric integrated-optic bias chip for optical voltage transducers,” J. Lightwave Technol. 32(24), 4730–4733 (2014).
    [Crossref]

2014 (5)

2013 (1)

2012 (2)

J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
[Crossref] [PubMed]

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

2011 (4)

2010 (3)

2006 (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

2005 (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

2004 (1)

2002 (1)

1994 (1)

1991 (1)

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

1989 (1)

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

1980 (1)

Bohnert, K.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Brandle, H.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Chamorovsky, Y. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Cheon, B.-J.

Chu, W.-S.

Dändliker, R.

Day, G. W.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Eickhoff, W.

Etzel, S. M.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Frosio, G.

Gabus, P.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

Gubin, V. P.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Heo, S.-W.

W.-S. Chu, S.-W. Heo, and M.-C. Oh, “Polymeric integrated-optic bias chip for optical voltage transducers,” J. Lightwave Technol. 32(24), 4730–4733 (2014).
[Crossref]

Huang, G.-H.

Isaev, V. A.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Jin, J.

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Kajioka, H.

Kang, J.

Kim, D.-H.

Kim, H.

Kim, J.-W.

G.-H. Huang, J.-W. Kim, W.-S. Chu, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Low-crosstalk high-density polymeric integrated optics incorporating self-assembled scattering monolayer,” Opt. Express 22(12), 14237–14245 (2014).
[Crossref] [PubMed]

B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
[Crossref] [PubMed]

J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
[Crossref] [PubMed]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

M.-C. Oh, W.-S. Chu, K.-J. Kim, and J.-W. Kim, “Polymer waveguide integrated-optic current transducers,” Opt. Express 19(10), 9392–9400 (2011).
[Crossref] [PubMed]

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[Crossref]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[Crossref] [PubMed]

Kim, K.-J.

Kim, S.-M.

Kondo, R.

R. Kondo and K. Kurosawa, “A method for improving temperature dependence of an optical fiber current sensor,” IEEE J Trans. Power Energy 130(4), 414–420 (2010).
[Crossref]

Kostovic, J.

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

Kumagai, T.

Kurosawa, K.

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
[Crossref]

R. Kondo and K. Kurosawa, “A method for improving temperature dependence of an optical fiber current sensor,” IEEE J Trans. Power Energy 130(4), 414–420 (2010).
[Crossref]

Laming, R. I.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Lee, C.-H.

Lee, H.-J.

Ma, P.

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Miyata, R.

Morshnev, S. K.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Nehring, J.

Noh, Y.-O.

Oh, M.-C.

J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices,” Opt. Express 22(20), 23801–23806 (2014).
[Crossref] [PubMed]

G.-H. Huang, J.-W. Kim, W.-S. Chu, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Low-crosstalk high-density polymeric integrated optics incorporating self-assembled scattering monolayer,” Opt. Express 22(12), 14237–14245 (2014).
[Crossref] [PubMed]

W.-S. Chu, S.-W. Heo, and M.-C. Oh, “Polymeric integrated-optic bias chip for optical voltage transducers,” J. Lightwave Technol. 32(24), 4730–4733 (2014).
[Crossref]

B.-J. Cheon, J.-W. Kim, and M.-C. Oh, “Plastic optical touch panels for large-scale flexible display,” Opt. Express 21(4), 4734–4739 (2013).
[Crossref] [PubMed]

J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
[Crossref] [PubMed]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

M.-C. Oh, W.-S. Chu, K.-J. Kim, and J.-W. Kim, “Polymer waveguide integrated-optic current transducers,” Opt. Express 19(10), 9392–9400 (2011).
[Crossref] [PubMed]

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[Crossref]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[Crossref] [PubMed]

Oussov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Park, S.-H.

Payne, D. N.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Rashleigh, S. C.

Rose, A. H.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Sazonov, A. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Seo, J.-K.

Shin, J.-S.

Shin, S.-Y.

Song, J.

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Song, N.

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Starostin, N. I.

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Tang, D.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

Tottori, Y.

Ulrich, R.

Xu, X.

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Yu, Q.

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Zhou, X.

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

Appl. Opt. (2)

IEEE J Trans. Power Energy (1)

R. Kondo and K. Kurosawa, “A method for improving temperature dependence of an optical fiber current sensor,” IEEE J Trans. Power Energy 130(4), 414–420 (2010).
[Crossref]

IEEE Sens. J. (1)

X. Zhou and Q. Yu, “Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement,” IEEE Sens. J. 11(7), 1602–1606 (2011).
[Crossref]

J. Lightwave Technol. (6)

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single-mode fiber coil: application to optical fiber current sensor,” J. Lightwave Technol. 9(8), 1031–1037 (1991).
[Crossref]

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

W.-S. Chu, S.-W. Heo, and M.-C. Oh, “Polymeric integrated-optic bias chip for optical voltage transducers,” J. Lightwave Technol. 32(24), 4730–4733 (2014).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20(2), 267–276 (2002).
[Crossref]

M.-C. Oh, J.-K. Seo, K.-J. Kim, H. Kim, J.-W. Kim, and W.-S. Chu, “Optical current sensors consisting of polymeric waveguide components,” J. Lightwave Technol. 28(12), 1851–1857 (2010).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Express (7)

Opt. Laser Technol. (1)

P. Ma, N. Song, J. Jin, J. Song, and X. Xu, “Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers,” Opt. Laser Technol. 44(6), 1829–1833 (2012).
[Crossref]

Opt. Lasers Eng. (1)

K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, “Optical fiber sensors for the electric power industry,” Opt. Lasers Eng. 43(3-5), 511–526 (2005).
[Crossref]

Opt. Lett. (1)

Photonic Sens. (1)

K. Kurosawa, “Development of fiber-optic current sensing technique and its applications in electric power systems,” Photonic Sens. 4(1), 12–20 (2014).
[Crossref]

Quantum Electron. (1)

V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Y. K. Chamorovsky, and A. I. Oussov, “Use of spun optical fibres in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic configuration of integrated optic current transducers consisting of the sensor head and the integrated optic device for optical signal processing.
Fig. 2
Fig. 2 The effect of QWP retardation error (a) on the amount of phase retardation of the reflected signal though the QWP and (b) on the sensor output signal detected by PD.
Fig. 3
Fig. 3 The procedures to fabricate the fiber-optic QWP: (a) Panda PM fiber (PMF) or PCF spliced to another PM fiber with their optic axes aligned to be 45°, (b) cleaved to leave the length of QWP, (c) single mode fiber spliced, (d) cleaved for the measurement of QWP characterization, and (e) the completed fiber-optic QWP.
Fig. 4
Fig. 4 Photographs of the QWP device consisting of (a) the splice between the PMF and PCF and (b) the splice between the PCF and spun PM fiber with a smaller cladding diameter. The cut views of (c) PM fiber, (d) PCF, and (e) spun PM fiber are also shown.
Fig. 5
Fig. 5 Schematic fabrication procedures of an integrated optic current transducer chip made of polymer waveguide.
Fig. 6
Fig. 6 Temperature-dependent QWP retardation, δ effect on the output signal amplitude. The straight lines indicate the phase retardation error calculated from the temperature-dependent birefringence of the QWPs.
Fig. 7
Fig. 7 Temperature dependence of the IOCT consisting of (a) a PMF-QWP and an annealed fiber, and (b) a PCF-QWP and a spun PM fiber exhibiting temperature dependence less than ± 1%.
Fig. 8
Fig. 8 Output response of the IOCT sensor consisting of a PCF-QWP and a spun PM fiber in which the sensing error is within ± 0.5% and satisfies the standard of 0.5 accuracy class (IEC 60044-8).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( E x E y ) out = M QWP 1 M FR 1 M R M FR M QWP ( E x E y ) in ,
M QWP =( cos( π 4 + δ 2 ) isin( π 4 + δ 2 ) isin( π 4 + δ 2 ) cos( π 4 + δ 2 ) ),
M FR =( cos θ F sin θ F sin θ F cos θ F ).
Δ ϕ R =arctan[ 2cosδsin4 θ f /( ( 1+ cos 2 δ )cos4 θ f sin 2 δ ) ]
4 θ f /cosδ,for θ f 1.
( E x E y ) out = 1 2 M Pol [ M PM + iM HWP ] M QWP 1 M R M QWP ( E x E y ) in ,
M PM = e PM ( 1 0 0 1 ),
M HWP =( 0 i i 0 ),
M Pol =( 1 0 0 0 ).
P out = | E out | 2 = 1 2 cos 2 δ cos 2 ( θ PM 2 )+ 1 4 sin 2 δ.

Metrics