Abstract

We present numerical simulations of low aspect ratio gallium phosphide nanowires under plane wave illumination, which reveal the interplay between transverse and longitudinal antenna-like resonances. A comparison to the limiting case of the semiconducting sphere shows a gradual, continuous transition of resonant electric and magnetic spherical Mie modes into Fabry-Pérot cavity modes with mixed electric and magnetic characteristics. As the length of the nanowires further increases, these finite-wire modes converge towards the leaky-mode resonances of an infinite cylindrical wire. Furthermore, we report a large and selective enhancement or suppression of electric and magnetic field in structures comprising two semiconducting nanowires. For an interparticle separation of 20 nm, we observe up to 300-fold enhancement in the electric field intensity and an almost complete quenching of the magnetic field in specific mode configurations. Angle-dependent extinction spectra highlight the importance of symmetry and phase matching in the excitation of cavity modes and show the limited validity of the infinite wire approximation for describing the response of finite length nanowires toward glancing angles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anisotropic light scattering by prismatic semiconductor nanowires

Miguel Urbaneja Torres, Anna Sitek, and Andrei Manolescu
Opt. Express 27(18) 25502-25514 (2019)

Hydrodynamic acoustic plasmon resonances in semiconductor nanowires and their dimers

Tahereh Golestanizadeh, Abbas Zarifi, Tahmineh Jalali, Johan R. Maack, and Martijn Wubs
J. Opt. Soc. Am. B 36(10) 2712-2720 (2019)

Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

R. Paniagua-Domínguez, D. R. Abujetas, L. S. Froufe-Pérez, J. J. Sáenz, and J. A. Sánchez-Gil
Opt. Express 21(19) 22076-22089 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
    [Crossref]
  2. F. M. Ross, “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys. 73, 114501 (2010).
    [Crossref]
  3. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  4. M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
    [Crossref] [PubMed]
  5. P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
    [Crossref]
  6. U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
    [Crossref]
  7. A. Mirzaei and A. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
    [Crossref] [PubMed]
  8. P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
    [Crossref]
  9. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
    [Crossref] [PubMed]
  10. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref] [PubMed]
  11. J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
    [Crossref] [PubMed]
  12. P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
    [Crossref]
  13. A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
    [Crossref]
  14. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
    [Crossref] [PubMed]
  15. S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
    [Crossref] [PubMed]
  16. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
    [Crossref] [PubMed]
  17. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
    [Crossref] [PubMed]
  18. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
    [Crossref] [PubMed]
  19. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
    [Crossref] [PubMed]
  20. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
    [Crossref] [PubMed]
  21. P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14, 429–434 (2014).
    [Crossref] [PubMed]
  22. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
    [Crossref] [PubMed]
  23. R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
    [Crossref] [PubMed]
  24. G. Mie, “Beiträge zur pptik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [Crossref]
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
    [Crossref]
  26. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [Crossref]
  27. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
    [Crossref] [PubMed]
  28. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
    [Crossref] [PubMed]
  29. M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
    [Crossref] [PubMed]
  30. B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).
  31. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
    [Crossref] [PubMed]
  32. M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
    [Crossref] [PubMed]
  33. A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
    [Crossref]
  34. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  35. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  36. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
    [Crossref] [PubMed]
  37. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
    [Crossref] [PubMed]
  38. S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
    [Crossref] [PubMed]
  39. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
    [Crossref] [PubMed]
  40. G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
    [Crossref] [PubMed]
  41. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
    [Crossref] [PubMed]
  42. J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
    [Crossref] [PubMed]
  43. L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
    [Crossref] [PubMed]
  44. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  45. D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
    [Crossref]
  46. L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
    [Crossref] [PubMed]
  47. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Expr. 21, 26285–26302 (2013).
    [Crossref]
  48. D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
    [Crossref]
  49. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
    [Crossref]
  50. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5184 (1998).
    [Crossref]
  51. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
    [Crossref]
  52. A. Borghesi and G. Guizzetti, “Gallium phosphide (GaP),” in “Handbook of Optical Constants of Solids,”, E. D. Palik, ed. (Academic Press, London, 1998), pp. 445–464.
  53. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [Crossref] [PubMed]
  54. In the formulation of Mie theory for infinitely long cylindrical waveguides, at the normal incidence the respective coefficients: blII (TE polarization) and alI (TM polarization) vanish and their response is determined by alII (TE polarization) and blI (TM polarization).
  55. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [Crossref] [PubMed]
  56. F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
    [Crossref] [PubMed]
  57. E. R. Encina and E. A. Coronado, “Near field enhancement in Ag Au nanospheres heterodimers,” J. Phys. Chem. C 115, 15908–15914 (2011).
    [Crossref]
  58. J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
    [Crossref] [PubMed]
  59. G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13, 3111–3117 (2013).
    [Crossref] [PubMed]
  60. R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
    [Crossref]
  61. E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
    [Crossref] [PubMed]
  62. L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
    [Crossref] [PubMed]
  63. P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
    [Crossref]
  64. M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
    [Crossref]
  65. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
    [Crossref]
  66. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
    [Crossref]

2015 (8)

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. Mirzaei and A. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref] [PubMed]

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[Crossref]

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

2014 (8)

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14, 429–434 (2014).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

2013 (9)

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Expr. 21, 26285–26302 (2013).
[Crossref]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13, 3111–3117 (2013).
[Crossref] [PubMed]

2012 (7)

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

2011 (6)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref] [PubMed]

E. R. Encina and E. A. Coronado, “Near field enhancement in Ag Au nanospheres heterodimers,” J. Phys. Chem. C 115, 15908–15914 (2011).
[Crossref]

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[Crossref] [PubMed]

2010 (4)

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

F. M. Ross, “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys. 73, 114501 (2010).
[Crossref]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

2009 (9)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
[Crossref]

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

2008 (2)

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

2007 (3)

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

2006 (2)

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

2005 (2)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

2003 (1)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

1998 (1)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5184 (1998).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur pptik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Abdeddaim, R.

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Abujetas, D. R.

D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[Crossref]

Aizpurua, J.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Saenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011).
[Crossref] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Albella, P.

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Alcaraz de la Osa, R.

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

Algra, R. E.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Andrä, G.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Arbouet, A.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Aussenegg, F. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Bakkers, E. P. A. M.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Baron, T.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

Beecher, P.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Belov, P. A.

Berger, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Birowosuto, M. D.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Bonod, N.

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Boreman, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Borghesi, A.

A. Borghesi and G. Guizzetti, “Gallium phosphide (GaP),” in “Handbook of Optical Constants of Solids,”, E. D. Palik, ed. (Academic Press, London, 1998), pp. 445–464.

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

Brener, I.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14, 429–434 (2014).
[Crossref] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Brönstrup, G.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Butt, H.-J.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Cahoon, J. F.

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

Cai, D.-J.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Cao, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Chantada, L.

Chen, G.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Chen, J.-D.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Chen, Z.-H.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Chichkov, B.

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Christiansen, S.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Christiansen, S. H.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Claudon, J.

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Colli, A.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Coronado, E. A.

E. R. Encina and E. A. Coronado, “Near field enhancement in Ag Au nanospheres heterodimers,” J. Phys. Chem. C 115, 15908–15914 (2011).
[Crossref]

Csáki, A.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Dal Negro, L.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13, 3111–3117 (2013).
[Crossref] [PubMed]

Day, R. W.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Diedenhofen, S. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Dionne, J. A.

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

Ditlbacher, H.

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Durrani, Z.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Ee, H.-S.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

Eklund, P. C.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Encina, E. R.

E. R. Encina and E. A. Coronado, “Near field enhancement in Ag Au nanospheres heterodimers,” J. Phys. Chem. C 115, 15908–15914 (2011).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

Esteban, R.

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Evlyukhin, A.

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Falk, F.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Fan, J. A.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Fan, P.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Fedyanin, A. A.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Fenollosa, R.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref] [PubMed]

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

Fernández-García, R.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

Ferrari, A.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Fischer, J.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Flewitt, A.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

Friedler, I.

Fritzsche, W.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Fu, Y.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

García de Abajo, F.

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5184 (1998).
[Crossref]

García-Etxarri, A.

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
[Crossref]

Gawlik, A.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Geffrin, J.

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Gérard, J. M.

Gerritsen, H. C.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Giannini, V.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Gómez-Medina, R.

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

Grzela, G.

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

Guizzetti, G.

A. Borghesi and G. Guizzetti, “Gallium phosphide (GaP),” in “Handbook of Optical Constants of Solids,”, E. D. Palik, ed. (Academic Press, London, 1998), pp. 445–464.

Gupta, A. K.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

Gutierrez, H. R.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Hara, M.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Hess, O.

Hidaka, S.-I.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Higashihata, M.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Hofer, F.

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Hofmann, S.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Hohenau, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Hohenester, U.

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Hopkins, B.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Howie, A.

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5184 (1998).
[Crossref]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Huang, L.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

Huang, Y.-H.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Hugonin, J. P.

Imasaka, K.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Jahr, N.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Ji, W.-B.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

Kaas, B. C.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Kallel, H.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Kang, J.-H.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Kempa, T. J.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Kim, S.-K.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Kivshar, Y. S.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

Krasnok, A. E.

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

Kreiter, M.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Krenn, J.

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Krenn, J. R.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Kuipers, L.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Kuramochi, E.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Lagendijk, A.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Lalanne, P.

Landfester, K.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Landreman, P. E.

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14, 429–434 (2014).
[Crossref] [PubMed]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Leiterer, C.

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

Leitner, A.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Lieber, C. M.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Liu, S.-D.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Liu, W.

Liu, Y.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Lo, Y.-H.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

López, C.

Lu, Q.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Mackowski, S.

Maier, S.

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

Maier, S. A.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Meseguer, F.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref] [PubMed]

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

Mie, G.

G. Mie, “Beiträge zur pptik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Milne, W.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Miroshnichenko, A.

A. Mirzaei and A. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref] [PubMed]

Miroshnichenko, A. E.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

Mirzaei, A.

A. Mirzaei and A. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref] [PubMed]

Mohammadi, R.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

Molina-Terriza, G.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

Monacelli, B.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Moreno, F.

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Muskens, O. L.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

Nakagawa, N.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Neshev, D. N.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Notomi, M.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

Okada, T.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Oulton, R. F.

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38, 2621–2624 (2013).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Paillard, V.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Paniagua-Domíguez, R.

D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[Crossref]

Paniagua-Domínguez, R.

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

Park, H.-G.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Pellen, M. E.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Periwal, P.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Petko, J. S.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Plentz, J.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Polman, A.

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Expr. 21, 26285–26302 (2013).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Poyli, M. A.

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Puscasu, I.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Ravindran, P.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

Rivas, J. G.

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

Robertson, J.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Rolly, B.

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Ross, F. M.

F. M. Ross, “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys. 73, 114501 (2010).
[Crossref]

Rühle, S.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Saenz, J. J.

Sáenz, J. J.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref] [PubMed]

Sanchez-Gil, J. A.

D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[Crossref]

Sánchez-Gil, J. A.

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

Sauvan, C.

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

Schaich, W. L.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Scheffold, F.

Schider, G.

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Schmidt, F.

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

Schmidt, M. K.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

M. K. Schmidt, R. Esteban, J. J. Sáenz, I. Suárez-Lacalle, S. Mackowski, and J. Aizpurua, “Dielectric antennas - a suitable platform for controlling magnetic dipolar emission,” Opt. Express 20, 13636–13650 (2012).
[Crossref] [PubMed]

Schmidt, M.K.

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

Seo, M.-K.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

Servati, P.

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Shorokhov, A. S.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Sivakov, V.

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

Soci, C.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Song, K.-D.

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

Sonnefraud, Y.

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Staude, I.

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

Stout, B.

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Suárez-Lacalle, I.

Suehiro, J.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Takiguchi, M.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Taniyama, H.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Tateno, K.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Ueda, M.

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

van de Groep, J.

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Expr. 21, 26285–26302 (2013).
[Crossref]

van Vugt, L. K.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Vanmaekelbergh, D.

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Vidal, X.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

Vogel, N.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Walsh, G. F.

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13, 3111–3117 (2013).
[Crossref] [PubMed]

Wang, D.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

Wang, W.-J.

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

Weiss, C. K.

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Werner, D. H.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

Wiecha, P. R.

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

Wu, C.

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

Wu, J.

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Xifré-Pérez, E.

E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express 19, 3455–3463 (2011).
[Crossref] [PubMed]

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

Xiong, Q.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

Yan, R.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
[Crossref]

Yang, P.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
[Crossref]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

You, S.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Yu, Y.

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, A.

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Zhang, G.

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Zywietz, U.

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

ACS Nano (3)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref] [PubMed]

G. Brönstrup, N. Jahr, C. Leiterer, A. Csáki, W. Fritzsche, and S. Christiansen, “Optical properties of individual silicon nanowires for photonic devices,” ACS Nano 4, 7113–7122 (2010).
[Crossref] [PubMed]

S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).
[Crossref] [PubMed]

ACS Photonics (4)

D. R. Abujetas, R. Paniagua-Domíguez, and J. A. Sanchez-Gil, “Unraveling the janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting,” ACS Photonics 2, 921–929 (2015).
[Crossref]

P. Albella, R. Alcaraz de la Osa, F. Moreno, and S. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies,” ACS Photonics 1, 524–529 (2014).
[Crossref]

M. R. Shcherbakov, A. S. Shorokhov, D. N. Neshev, B. Hopkins, I. Staude, E. V. Melik-Gaykazyan, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers,” ACS Photonics 2, 524–529 (2015).
[Crossref]

U. Zywietz, M.K. Schmidt, A. Evlyukhin, C. Reinhardt, J. Aizpurua, and B. Chichkov, “Electromagnetic resonances of silicon nanoparticle dimers in the visible,” ACS Photonics 2, 913–920 (2015).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur pptik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (1)

A. Zhang, S. You, C. Soci, Y. Liu, D. Wang, and Y.-H. Lo, “Silicon nanowire detectors showing phototransistive gain,” Appl. Phys. Lett. 93, 121110 (2008).
[Crossref]

Contemp. Phys. (1)

R. Fernández-García, Y. Sonnefraud, A. I. Fernández-Domínguez, V. Giannini, and S. A. Maier, “Design considerations for near-Field enhancement in optical antennas,” Contemp. Phys. 55, 1–11 (2014).
[Crossref]

J. Phys. Chem. C (3)

E. R. Encina and E. A. Coronado, “Near field enhancement in Ag Au nanospheres heterodimers,” J. Phys. Chem. C 115, 15908–15914 (2011).
[Crossref]

D.-J. Cai, Y.-H. Huang, W.-J. Wang, W.-B. Ji, J.-D. Chen, Z.-H. Chen, and S.-D. Liu, “Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry,” J. Phys. Chem. C 119, 4252–4260 (2015).
[Crossref]

P. Albella, M. A. Poyli, M. K. Schmidt, S. A. Maier, F. Moreno, J. J. Sáenz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117, 13573–13584 (2013).
[Crossref]

Nano Lett. (13)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett. 12, 6459–6463 (2012).
[Crossref] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett. 10, 1229–1233 (2010).
[Crossref] [PubMed]

S.-K. Kim, R. W. Day, J. F. Cahoon, T. J. Kempa, K.-D. Song, H.-G. Park, and C. M. Lieber, “Tuning light absorption in core/Shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971–4976 (2012).
[Crossref] [PubMed]

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters,” Nano Lett. 9, 1549–1554 (2009).
[Crossref] [PubMed]

P. E. Landreman and M. L. Brongersma, “Deep-subwavelength semiconductor nanowire surface plasmon polariton couplers,” Nano Lett. 14, 429–434 (2014).
[Crossref] [PubMed]

L. Huang, Y. Yu, and L. Cao, “General modal properties of optical resonances in subwavelength nonspherical dielectric structures,” Nano Lett. 13, 3559–3565 (2013).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12, 5481–5486 (2012).
[Crossref] [PubMed]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8, 1341–1346 (2008).
[Crossref] [PubMed]

F. Schmidt, H. Ditlbacher, F. Hofer, J. Krenn, and U. Hohenester, “Morphing a plasmonic nanodisk into a nanotriangle”, Nano Lett. 14, 4810–4815 (2014).
[Crossref] [PubMed]

G. F. Walsh and L. Dal Negro, “Enhanced second harmonic generation by photonic-plasmonic fano-type coupling in nanoplasmonic arrays,” Nano Lett. 13, 3111–3117 (2013).
[Crossref] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett. 11, 1463–1468 (2011).
[Crossref] [PubMed]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett. 9, 2372–2377 (2009).
[Crossref]

Nano Letters (5)

J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated raman scattering from short gap nanowires,” Nano Letters 9, 3252–3257 (2009).
[Crossref] [PubMed]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of sub-wavelength silicon nanoblocks,” Nano Letters 15, 1759–1765 (2015).
[Crossref]

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. A. M. Bakkers, J. Gómez Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Letters 9, 930–934 (2009).
[Crossref] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12, 3749–3755 (2012).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).
[Crossref] [PubMed]

Nanoscale (3)

R. Paniagua-Domínguez, G. Grzela, J. G. Rivas, and J. A. Sánchez-Gil, “Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes,” Nanoscale 5, 10582–10590 (2013).
[Crossref] [PubMed]

A. Mirzaei and A. Miroshnichenko, “Electric and magnetic hotspots in dielectric nanowire dimers,” Nanoscale 7, 5963–5968 (2015).
[Crossref] [PubMed]

J. Fischer, N. Vogel, R. Mohammadi, H.-J. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

J. Suehiro, N. Nakagawa, S.-I. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, “Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor,” Nanotechnology 17, 2567–2573 (2006).
[Crossref] [PubMed]

Nat. Commun. (2)

C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
[Crossref] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Nat. Mater. (3)

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009).
[Crossref] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459 (2005).
[Crossref] [PubMed]

M. D. Birowosuto, G. Zhang, K. Tateno, E. Kuramochi, H. Taniyama, M. Takiguchi, and M. Notomi, “Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform,” Nat. Mater. 13, 279–285 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photon. 3, 569–576 (2009).
[Crossref]

Nature (2)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Opt. Expr. (1)

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Expr. 21, 26285–26302 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. E (1)

P. Servati, A. Colli, S. Hofmann, Y. Fu, P. Beecher, Z. Durrani, A. Ferrari, A. Flewitt, J. Robertson, and W. Milne, “Scalable silicon nanowire photodetectors,” Phys. E 38, 64–66 (2007).
[Crossref]

Phys. Rev. B (5)

P. R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, and V. Paillard, “Enhanced nonlinear optical response from individual silicon nanowires,” Phys. Rev. B 91, 121416 (2015).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[Crossref]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[Crossref]

A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, “Plasmon dispersion relation of au and ag nanowires,” Phys. Rev. B 68, 155427 (2003).
[Crossref]

Phys. Rev. Lett. (5)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[Crossref] [PubMed]

E. Xifré-Pérez, F. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett. 103, 103902 (2009).
[Crossref] [PubMed]

L. K. van Vugt, S. Rühle, P. Ravindran, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polaritons confined in a zno nanowire cavity,” Phys. Rev. Lett. 97, 147401 (2006).
[Crossref] [PubMed]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett. 80, 5180–5184 (1998).
[Crossref]

M. K. Schmidt, J. Aizpurua, X. Zambrana-Puyalto, X. Vidal, G. Molina-Terriza, and J. J. Sáenz, “Isotropically polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

F. M. Ross, “Controlling nanowire structures through real time growth studies,” Rep. Prog. Phys. 73, 114501 (2010).
[Crossref]

Sci. Reports (1)

B. Rolly, J. Geffrin, R. Abdeddaim, B. Stout, and N. Bonod, “Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer,” Sci. Reports 3, 3063 (2013).

Other (3)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

A. Borghesi and G. Guizzetti, “Gallium phosphide (GaP),” in “Handbook of Optical Constants of Solids,”, E. D. Palik, ed. (Academic Press, London, 1998), pp. 445–464.

In the formulation of Mie theory for infinitely long cylindrical waveguides, at the normal incidence the respective coefficients: blII (TE polarization) and alI (TM polarization) vanish and their response is determined by alII (TE polarization) and blI (TM polarization).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the dielectric nanorod with normally incident TM or TE polarized illuminations. The nanorod is modeled as a cylinder with hemispherical caps of total length L and radius r. The endcaps provide a continous distribution of longitudinal wavevectors k, suggesting that the nanorod can be considered as a Fabry-Pérot resonator. (b) Exemplary schematic of electric (red lines) and magnetic (blue lines) field distribution of the Fabry-Pérot modes b 1 1 and b 1 3. See the text for detailed description of the modes.
Fig. 2
Fig. 2 (a,b) Maps showing calculated extinction coefficient Qext obtained under TM and TE polarized light for a nanorod with a constant diameter of 300 nm and a length varied between 300 nm and 1400 nm. (c – f) Peak positions plotted as energy against reciprocal wire length 1/L. (c, d) Data points are extracted from simulations. (e, f) Peak positions calculated by Eq. (1).
Fig. 3
Fig. 3 Evolution of the cylindrical mode b 1 1 and the first family of FP modes a 2 n under TM polarization as the length is increased from 300 nm to 1400 nm. The number of nodes of the E- and H-fields in the z-direction are preserved as the length is increased.
Fig. 4
Fig. 4 Evolution of the cylindrical mode b 1 1 and the first family of FP modes b 1 n under TE polarization as the length is increased from 300 nm to 1400 nm. The number of nodes of the E- and H-fields in the z-direction are preserved as the length is increased.
Fig. 5
Fig. 5 Examples of higher order TM and TE modes for n = 5. The a 2 5 and a 3 5 modes were calculated for a nanowire length of 1400 nm, the b 1 5 and b 2 5 for a nanowire length of 1200 nm and the b 3 5 for a length of 980 nm. The different dimensions are necessary due to the density of resonances for shorter wavelengths.
Fig. 6
Fig. 6 (a) Electric near-field enhancement at the midgap of a 300 nm diameter nanorod dimer, as a function of nanorod length. (b,c) The electric and magnetic near-field intensity enhancement at the midgap of the same dimer structure (red) and 10 nm away from the tip of a single L = 1400 nm nanorod (black). (d,e) Colour maps showing the magnitude of the electric and magnetic field, relative to the incident field, through the center of the structure in the xz plane. The a 2 3 mode simultaneously demonstrates electric field enhancement and significant magnetic field suppression. All results for TM polarized incident light.
Fig. 7
Fig. 7 Calculated extinction coefficient Qext against angle of incidence for infinite cylinder (a,b) and for finite rods with length L = 1400 nm (c,d), for 300 nm diameter. Polarizations correspond to TM (a,c) and TE (b,d). Stars indicate even-order FP modes excited at oblique angles of incidence. (e,f) Line graphs showing the angle dependence of Qext (i.e. taken from maps c and d at selected wavelengths) for modes a 2 n and a 3 n for TM and b 1 n and b 2 n for TE. (g,h) Calculated mode profiles (both E and H fields) for selected modes a 2 3 for TM and b 2 9 for TE polarizations, for angles of incidence of 10° and 90°. Small shift in resonance wavelength for a 2 3 is attributed to changes in mode distribution for different incident angles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E l n c = k , l 2 + ( k n ) 2 = 2 π 1 λ l 2 + ( n 2 L m ) 2

Metrics