Abstract

Passive and active polymer micro bottle resonators (MBRs) are fabricated. Equatorial whispering gallery modes and bottle modes are clearly identified, with highest loaded quality (Q) factor above 105. Lasing with threshold as low as 1 nJ/pulse is realized in active MBRs. Mode selective lasing is achieved by coupling a tapered fiber to equatorial whispering gallery modes or a group of bottle modes. The bottle mode free spectral range (FSR) is found to be about one fifth of the equatorial modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Controllable and selective single-mode lasing in polymer microbottle resonator

Qijing Lu, Xiaogang Chen, Shusen Xie, and Xiang Wu
Opt. Express 26(16) 20183-20191 (2018)

Selective excitation of whispering gallery modes in a novel bottle microresonator

Ganapathy Senthil Murugan, James S. Wilkinson, and Michalis N. Zervas
Opt. Express 17(14) 11916-11925 (2009)

Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators

Fuming Xie, Ni Yao, Wei Fang, Haifeng Wang, Fuxing Gu, and Songlin Zhuang
Photon. Res. 5(6) B29-B33 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29(1), 8–10 (2004).
    [Crossref] [PubMed]
  2. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
    [Crossref]
  3. M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
    [Crossref] [PubMed]
  4. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
    [Crossref] [PubMed]
  5. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35(7), 898–900 (2010).
    [Crossref] [PubMed]
  6. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref] [PubMed]
  7. G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas, “Hollow-bottle optical microresonators,” Opt. Express 19(21), 20773–20784 (2011).
    [Crossref] [PubMed]
  8. H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
    [Crossref] [PubMed]
  9. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref] [PubMed]
  10. Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
    [Crossref] [PubMed]
  11. X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
    [Crossref]
  12. A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
    [Crossref] [PubMed]
  13. P. Bianucci, X. Wang, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics,” Opt. Express 18(8), 8466–8481 (2010).
    [Crossref] [PubMed]
  14. I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
    [Crossref]
  15. G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
    [Crossref] [PubMed]
  16. G. Senthil Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
    [Crossref] [PubMed]
  17. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [Crossref]
  18. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
    [Crossref] [PubMed]
  19. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
    [Crossref]
  20. V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
    [Crossref]
  21. M. Sumetsky, “Mode localization and the Q-factor of a cylindrical microresonator,” Opt. Lett. 35(14), 2385–2387 (2010).
    [Crossref] [PubMed]
  22. M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
    [Crossref]

2014 (4)

Y. Yang, J. Ward, and S. N. Chormaic, “Quasi-droplet microbubbles for high resolution sensing applications,” Opt. Express 22(6), 6881–6898 (2014).
[Crossref] [PubMed]

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

G. Gu, C. Guo, Z. Cai, H. Xu, L. Chen, H. Fu, K. Che, M. Hong, S. Sun, and F. Li, “Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring,” Appl. Opt. 53(32), 7819–7824 (2014).
[Crossref] [PubMed]

2013 (4)

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

2012 (1)

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

2011 (2)

2010 (5)

2009 (2)

G. Senthil Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17(14), 11916–11925 (2009).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

2007 (2)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

2005 (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

2004 (1)

Baldini, F.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Berneschi, S.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Bernini, R.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Bianucci, P.

Brambilla, G.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Bröll, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Cai, Z.

Che, K.

Chen, L.

Chen, R.

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Chen, S.-L.

Chormaic, S. N.

Conti, G. N.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Ding, M.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

Dulashko, Y.

Ehlermann, J.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Fan, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

H. Li, Y. Guo, Y. Sun, K. Reddy, and X. Fan, “Analysis of single nanoparticle detection by using 3-dimensionally confined optofluidic ring resonators,” Opt. Express 18(24), 25081–25088 (2010).
[Crossref] [PubMed]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Fu, H.

Grimaldi, I. A.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Gu, G.

Guo, C.

Guo, L. J.

Guo, Y.

Harland, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Hong, M.

Jung, Y.

Junge, C.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

Klingbeil, M.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Li, F.

Li, H.

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Ling, T.

Liu, L.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Louyer, Y.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Ma, L.

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Meldrum, A.

Mendach, S.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Meschede, D.

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Murugan, G. S.

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

O’Shea, D.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Petrovich, M. N.

Pöllinger, M.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Rauschenbeutel, A.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Reddy, K.

Rottler, A.

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Senthil Murugan, G.

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Sumetsky, M.

Sun, H. D.

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Sun, S.

Sun, Y.

Ta, V. D.

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Testa, G.

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

Veinot, J. G. C.

Volz, J.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

Wang, X.

Ward, J.

Warken, F.

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

Wilkinson, J. S.

Windeler, R. S.

Wu, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Xu, H.

Xu, L.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Yang, Y.

Ying, Y. J.

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Zervas, M. N.

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Zhang, X.

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

Anal. Chem. (1)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

X. Zhang, L. Liu, and L. Xu, “Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme,” Appl. Phys. Lett. 104(3), 033703 (2014).
[Crossref]

I. A. Grimaldi, S. Berneschi, G. Testa, F. Baldini, G. N. Conti, and R. Bernini, “Polymer based planar coupling of self-assembled bottle microresonators,” Appl. Phys. Lett. 105(23), 231114 (2014).
[Crossref]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett. 90(22), 221101 (2007).
[Crossref]

M. Ding, G. S. Murugan, G. Brambilla, and M. N. Zervas, “Whispering gallery mode selection in optical bottle microresonators,” Appl. Phys. Lett. 100(8), 081108 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[Crossref]

Laser Photonics Rev. (1)

V. D. Ta, R. Chen, L. Ma, Y. J. Ying, and H. D. Sun, “Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber,” Laser Photonics Rev. 7(1), 133–139 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. A (1)

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72(3), 031801 (2005).
[Crossref]

Phys. Rev. Lett. (3)

M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103(5), 053901 (2009).
[Crossref] [PubMed]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

A. Rottler, M. Harland, M. Bröll, M. Klingbeil, J. Ehlermann, and S. Mendach, “High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter,” Phys. Rev. Lett. 111(25), 253901 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Optical microscope image of a WGM bottle resonator. (b) Calculated field distributions of a fundamental (p = 3, q = 0) and a high order bottle mode (p = 3, q = 5). (c) Transmission spectra of a WGM bottle resonator (Db = 38 μm) excited by a tapered fiber at the center of the MBR. (d) Fine transmission spectrum of a WGM, its FWHW is 530 MHz. (e) Calculated effective index of different radial mode and tapered fiber (diameter ~1.5 μm) mode.
Fig. 2
Fig. 2 (a) Schematic diagram of the photoluminescence measurement system. (b) Emission intensity vs pump energy of a active MBR equatorial WGM with Db = 230 μm, Da = 125 μm, Lb = 690 μm and Δk = 0.0045 μm−1, lasing threshold is about 49 nJ/mm2. Y-axis is the total integrated intensity of the mode and the same as in Fig. 3. Inset: Optical micrographs of emitted light above the threshold from the MBR. (c) Emission spectrum of the MBR at Ipump = 53.2 nJ/mm2. (d) Emission spectrum of another active MBR with Db = 40 μm, Da = 31 μm, Lb = 98 μm and Δk = 0.0166 μm−1.
Fig. 3
Fig. 3 (a) Schematic diagram of the photoluminescence measurement system via a tapered fiber. (b) Measured lasing threshold as a function of the pumping point positions. Figures 3(c)-(l) Emission intensity vs pump energy and lasing emission spectra by pumping the MBR at different positions shown in the inset of (c), (e), (g), (i) and (k), respectively. Insets in (d), (h) and (l) are spectra with pumped intensity of 6 nJ, 4 nJ, and 6 nJ, respectively.
Fig. 4
Fig. 4 (a) Field distributions of axial modes with q = 0, 26 and 96. Red dashed lines indicate positions 0, 16 μm and 32 μm away from the center, respectively. (b) Resonant wavelength of (m, q) modes at q = 23-35. Tapered fiber overlaps with the largest mode spot of q = 23-30 and second mode spot of q = 33-35. (c) Resonant wavelength of (m, q) modes at q = 94-98. Tapered fiber overlaps with the largest mode spot.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ q = Δ k × λ 2 2 π n .

Metrics