Abstract

A remote heterodyne millimeter-wave (MMW) carrier at 47.7 GHz over fiber synthesized with the master-to-slave injected dual-mode colorless FPLD pair is proposed, which enables the future connection between the wired fiber-optic 64-QAM OFDM-PON at 24 Gb/s with the MMW 4-QAM OFDM wireless network at 2 Gb/s. Both the single- and dual-mode master-to-slave injection-locked colorless FPLD pairs are compared to optimize the proposed 64-QAM OFDM-PON. For the unamplified single-mode master, the slave colorless FPLD successfully performs the 64-QAM OFDM data at 24 Gb/s with EVM, SNR and BER of 8.5%, 21.5 dB and 2.9 × 10−3, respectively. In contrast, the dual-mode master-to-slave injection-locked colorless FPLD pair with amplified and unfiltered master can transmit 64-QAM OFDM data at 18 Gb/s over 25-km SMF to provide EVM, SNR and BER of 8.2%, 21.8 dB and 2.2 × 10−3, respectively. For the dual-mode master-to-slave injection-locked colorless FPLD pair, even though the modal dispersion occurred during 25-km SMF transmission makes it sacrifice the usable OFDM bandwidth by only 1 GHz, which guarantees the sufficient encoding bitrate for the optically generated MMW carrier to implement the fusion of MMW wireless LAN and DWDM-PON with cost-effective and compact architecture. As a result, the 47.7-GHz MMW carrier remotely beat from the dual-mode master-to-slave injection-locked colorless FPLD pair exhibits an extremely narrow bandwidth of only 0.48 MHz. After frequency down-conversion operation, the 47.7-GHz MMW carrier successfully delivers 4-QAM OFDM data up to 2 Gb/s with EVM, SNR and BER of 33.5%, 9.51 dB and 1.4 × 10−3, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link

Huai-Yung Wang, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Express 24(16) 17654-17669 (2016)

Two-color laser diode for 54-Gb/s fiber-wired and 16-Gb/s MMW wireless OFDM transmissions

Chung-Yu Lin, Yu-Chieh Chi, Cheng-Ting Tsai, Hsiang-Yu Chen, and Gong-Ru Lin
Photon. Res. 5(4) 271-279 (2017)

TO-56-can packaged colorless WRC-FPLD for QAM OFDM transmission at 42 Gbit/s over 25-km SMF

Min-Chi Cheng, Yu-Chieh Chi, Cheng-Ting Tsai, Chung-Yu Lin, and Gong-Ru Lin
Opt. Express 23(17) 22676-22690 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. Y.-Y. Won, H.-S. Kim, Y.-H. Son, and S.-K. Han, “Full colorless WDM-radio over fiber access network supporting simultaneous transmission of millimeter-wave band and baseband gigabit signals by sideband routing,” J. Lightwave Technol. 28(16), 2213–2218 (2010).
    [Crossref]
  4. T. Shao, F. Paresys, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Simultaneous transmission of gigabit wireline signal and ECMA 387 mmW over fiber using a single MZM in multi-band modulation,” in Proc. IEEE Topical Meeting on Microwave Photonics, Singapore, pp. 149–152.
  5. J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw-Hill, 2002).
  6. D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2011).
  7. A. K. Maini, V. A. Chichester, and W. Sussex, Satellite Technology: Principles and Applications (John Wiley & Sons, 2010).
  8. F. Paresys, T. Shao, G. Maury, Y. L. Guennec, and B. Cabon, “Bidirectional millimeter-wave radio-over-fiber system based on photodiode mixing and optical heterodyning,” J. Opt. Commun. Netw. 5(1), 74–80 (2013).
    [Crossref]
  9. G. H. Smith and D. Novak, “Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
    [Crossref]
  10. A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
    [Crossref]
  11. J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  12. E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
    [Crossref]
  13. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  14. M. K. Hong, Y. Y. Won, and S. K. Han, “Gigabit optical access link for simultaneous wired and wireless signal transmission based on dual parallel injection-locked Fabry-Pérot laser diodes,” J. Lightwave Technol. 26(15), 2725–2731 (2008).
    [Crossref]
  15. M. R. H. Khan, D. A. I. Marpaung, M. Burla, and C. G. H. Roeloffzen, “A novel measurement technique to estimate the RF beat-linewidth of free-running heterodyning system using a photonic discriminator,” in Proc. IEEE International Topical Meeting on & Microwave Photonics Conference, Singapore, pp. 324–327.
    [Crossref]
  16. M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
    [Crossref]
  17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 1995).
  18. Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
    [Crossref]
  19. F. Friederich, G. Schuricht, A. Deninger, F. Lison, G. Spickermann, P. Haring Bolívar, and H. G. Roskos, “Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range,” Opt. Express 18(8), 8621–8629 (2010).
    [Crossref] [PubMed]
  20. S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
    [Crossref]
  21. Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “All colorless FPLD based bidirectional full-duplex DWDM-PON,” J. Lightwave Technol. 33(4), 832–842 (2015).
    [Crossref]

2015 (1)

2013 (2)

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

F. Paresys, T. Shao, G. Maury, Y. L. Guennec, and B. Cabon, “Bidirectional millimeter-wave radio-over-fiber system based on photodiode mixing and optical heterodyning,” J. Opt. Commun. Netw. 5(1), 74–80 (2013).
[Crossref]

2011 (1)

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

2010 (3)

2009 (2)

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

2005 (1)

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

1998 (1)

G. H. Smith and D. Novak, “Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Andrekson, P. A.

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

Andres, M.

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

Cabon, B.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, H. Y.

Chi, S.

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Chi, Y. C.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “All colorless FPLD based bidirectional full-duplex DWDM-PON,” J. Lightwave Technol. 33(4), 832–842 (2015).
[Crossref]

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Chow, C. W.

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Deninger, A.

Friederich, F.

Guennec, Y. L.

Han, S. K.

Han, S.-K.

Haring Bolívar, P.

Hedevkist, P. O.

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Hong, M. K.

Jia, Z.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Keller, M. W.

M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
[Crossref]

Kim, H.-S.

Lau, E. K.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Liang, J. W.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Liao, J. W.

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Lin, G. C.

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Lin, G. R.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “All colorless FPLD based bidirectional full-duplex DWDM-PON,” J. Lightwave Technol. 33(4), 832–842 (2015).
[Crossref]

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Lin, S. Y.

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Lison, F.

Maury, G.

Millan, P.

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

G. H. Smith and D. Novak, “Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

Paresys, F.

Pufall, M. R.

M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
[Crossref]

Rippard, W. H.

M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
[Crossref]

Roskos, H. G.

Schuricht, G.

Shao, T.

Shih, Y. F.

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Silva, T. J.

M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
[Crossref]

Smith, G. H.

G. H. Smith and D. Novak, “Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

Son, Y.-H.

Spickermann, G.

Su, Y. C.

Y. C. Su, Y. C. Chi, H. Y. Chen, and G. R. Lin, “All colorless FPLD based bidirectional full-duplex DWDM-PON,” J. Lightwave Technol. 33(4), 832–842 (2015).
[Crossref]

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Wang, H. L.

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

Wang, T.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Wiberg, A.

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

Won, Y. Y.

Won, Y.-Y.

Wu, M. C.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

Wu, Y. F.

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Yao, J.

Yeh, C. H.

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Yi, L.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yu, J.

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: a tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 563–571 (2009).
[Crossref]

S. Y. Lin, Y. C. Chi, Y. C. Su, J. W. Liao, H. L. Wang, G. C. Lin, and G. R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1501011 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (3)

G. H. Smith and D. Novak, “Broadband millimetre-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects,” IEEE Photon. Technol. Lett. 10(1), 141–143 (1998).
[Crossref]

A. Wiberg, P. Millan, M. Andres, P. A. Andrekson, and P. O. Hedevkist, “Fiber-optic 40-GHz MMW link with 2.5 Gb/s data transmission,” IEEE Photon. Technol. Lett. 17(9), 1938–1940 (2005).
[Crossref]

J. Yu, Z. Jia, L. Yi, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Laser Phys. (1)

Y. F. Wu, C. H. Yeh, C. W. Chow, Y. F. Shih, and S. Chi, “Employing external injection-locked Fabry-Perot laser scheme for MMW generation,” Laser Phys. 21(4), 718–721 (2011).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

M. W. Keller, M. R. Pufall, W. H. Rippard, and T. J. Silva, “Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth,” Phys. Rev. B 82(5), 054416 (2010).
[Crossref]

Other (6)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 1995).

M. R. H. Khan, D. A. I. Marpaung, M. Burla, and C. G. H. Roeloffzen, “A novel measurement technique to estimate the RF beat-linewidth of free-running heterodyning system using a photonic discriminator,” in Proc. IEEE International Topical Meeting on & Microwave Photonics Conference, Singapore, pp. 324–327.
[Crossref]

T. Shao, F. Paresys, Y. Le Guennec, G. Maury, N. Corrao, and B. Cabon, “Simultaneous transmission of gigabit wireline signal and ECMA 387 mmW over fiber using a single MZM in multi-band modulation,” in Proc. IEEE Topical Meeting on Microwave Photonics, Singapore, pp. 149–152.

J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw-Hill, 2002).

D. M. Pozar, Microwave Engineering (John Wiley & Sons, 2011).

A. K. Maini, V. A. Chichester, and W. Sussex, Satellite Technology: Principles and Applications (John Wiley & Sons, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The dual-mode master-to-slave injection-locked colorless FPLD pair for OFDM-PON transmission and MMW carrier generation simultaneously.
Fig. 2
Fig. 2 Experimental setup of the dual-mode master-to-slave injection-locked colorless FPLD pair with different-stage OBPFs for 64-QAM OFDM transmission.
Fig. 3
Fig. 3 (a) The power-to-current curve and (b) the frequency response of the slave colorless FPLD injection-locked by the 1st OBPF filtered master colorless FPLD with or without EDFA amplification.
Fig. 4
Fig. 4 The RINs of the slave colorless FPLD injection-locked by the 1st OBPF filtered master (a) without and (b) with EDFA amplification.
Fig. 5
Fig. 5 (a) The optical spectra of slave colorless FPLD injection-locked by the filtered master colorless FPLD without and with EDFA amplification; (b) The slave SMSR and the peak power of injection-locked and highest side-mode.
Fig. 6
Fig. 6 The SNRs of the slave colorless FPLD injection-locked by the single-mode master colorless FPLD (a) at different injection powers and (b) biased currents.
Fig. 7
Fig. 7 The constellation plots and related BERs of the 64-QAM OFDM data generated from the slave colorless FPLD injection-locked by the single-mode master at different injection powers and biased currents.
Fig. 8
Fig. 8 (a) SNR, (b) BER and (c) constellation plots of the 64-QAM OFDM data generated from the dual-mode master-to-slave injection-locked colorless FPLD pair with and without the 3rd OBPF.
Fig. 9
Fig. 9 Optical Spectra of the master and the slave colorless FPLDs at different filtering and injection-locking conditions.
Fig. 10
Fig. 10 The RIN of the dual-mode master-to-slave injection-locked colorless FPLD pair with different-stage OBPFs.
Fig. 11
Fig. 11 (a) SNR, (b) BER and (c) constellation plots of the dual-mode master-to-slave injection-locked colorless FPLD pair delivered 64-QAM OFDM data with and without 1st optical filtering.
Fig. 12
Fig. 12 (a) SNR, (b) BER and (c) constellation plots of the 64-QAM OFDM data generated from the dual-mode master-to-slave injection-locked colorless FPLD pair with and without the 3rd OBPF.
Fig. 13
Fig. 13 (a) Beat MMW carrier and (b) SSB spectra from dual-mode master-to-slave injection-locked colorless FPLD pair and dual-DFBLD injection-locked colorless FPLD.
Fig. 14
Fig. 14 (a) The 2D constellation plot, related SNR of subcarriers for the down-converted 2-Gb/s 4-QAM OFDM data and (b) the 3D constellation plot and corresponding SNR of each symbol.

Metrics