Abstract

Cholesteric liquid crystals (CLCs) are self-organized helical nano-structures that selectively reflect certain wavelength of a circularly polarized light. For most CLCs, the handedness is fixed once a chiral dopant is employed. Here, we report a handedness-invertible CLC through opposite-handed doping of a photo-sensitive chiral azobenzene dopant and a photo-stable chiral dopant. With high solubility of the photo-sensitive chiral dopant, the Bragg reflection can be tailored from right-handed to left-handed upon UV exposure. The reversed process can be easily carried out through heating.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-tuning and band-broadening of a cholesteric liquid crystal induced by a cyclic chiral azobenzene compound

H. B. Lu, X. Y. Xie, J. Xing, C. Xu, Z. Q. Wu, G. B. Zhang, G. Q. Lv, and L. Z. Qiu
Opt. Mater. Express 6(10) 3145-3158 (2016)

Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring

Igor Gvozdovskyy, Oleg Yaroshchuk, Marina Serbina, and Rumiko Yamaguchi
Opt. Express 20(4) 3499-3508 (2012)

Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility

Yuhua Huang, Ying Zhou, Charlie Doyle, and Shin-Tson Wu
Opt. Express 14(3) 1236-1242 (2006)

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, 1995).
  2. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  3. V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).
  4. B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
    [Crossref]
  5. B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
    [Crossref]
  6. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
    [Crossref]
  7. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
    [Crossref] [PubMed]
  8. P. Shibaev, R. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13(7), 2358–2363 (2005).
    [Crossref] [PubMed]
  9. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [Crossref]
  10. C.-T. Wang, Y.-C. Wu, and T.-H. Lin, “Photo-switchable bistable twisted nematic liquid crystal optical switch,” Opt. Express 21(4), 4361–4366 (2013).
    [Crossref] [PubMed]
  11. A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
    [Crossref] [PubMed]
  12. Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
    [Crossref]
  13. Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
    [Crossref]
  14. Y.-J. Liu, Y.-B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [Crossref] [PubMed]
  15. I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mater. Express 1(8), 1484–1493 (2011).
    [Crossref]
  16. P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
    [Crossref]
  17. T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
    [Crossref] [PubMed]
  18. N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
    [Crossref]
  19. M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
    [Crossref] [PubMed]
  20. M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
    [Crossref] [PubMed]
  21. I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
    [Crossref]
  22. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  23. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
    [Crossref] [PubMed]
  24. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
    [Crossref] [PubMed]
  25. Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
    [Crossref]
  26. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [Crossref] [PubMed]
  27. L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
    [Crossref] [PubMed]
  28. I. Dierking, Textures of Liquid Crystals (Wiley, 2006).

2014 (3)

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20(4), 3499–3508 (2012).
[Crossref] [PubMed]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

2011 (2)

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

I. P. Ilchishin, L. N. Lisetski, and T. V. Mykytiuk, “Reversible phototuning of lasing frequency in dye doped cholesteric liquid crystal and ways to improve it,” Opt. Mater. Express 1(8), 1484–1493 (2011).
[Crossref]

2010 (1)

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

2009 (2)

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Y.-J. Liu, Y.-B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[Crossref] [PubMed]

2008 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

2007 (1)

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

2004 (1)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

2003 (1)

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

2001 (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

1999 (2)

P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

1995 (1)

B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
[Crossref]

1992 (1)

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

1991 (1)

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

1990 (1)

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Bobrovsky, A.

Brehmer, M.

P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]

Bunning, T.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Bunning, T. J.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

Cazzell, S. A.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Chiappetta, D.

de Lange, B.

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Dong, H.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Doyle, C.

Feringa, B. L.

B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
[Crossref]

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

Ferrarini, A.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Freer, A. S.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Fuh, Y.-G.

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

Genack, A.

Giepelmann, F.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Green, L.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Gvozdovskyy, I.

Hong, Q.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

Huang, H.

Huang, L.-J.

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

Huang, T. J.

Huang, Y.

Huck, N. P. M.

B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
[Crossref]

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Ilchishin, I. P.

Jager, W. F.

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

Katsonis, N.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Khizhnyaka, A.

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Kosa, T.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Kravchuk, R. M.

Kuczynskit, W.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Kurihara, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Kutulyaa, L.

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Lacaze, E.

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Lagerwall, S. T.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Lee, W.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Li, J.-H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Li, Q.

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Li, Y.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

Lin, T.-H.

Lisetski, L. N.

Liu, T.-C.

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

Liu, Y.-J.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Y.-J. Liu, Y.-B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[Crossref] [PubMed]

Lub, J.

P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]

Mathews, M.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Meijer, E. W.

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

Milner, V.

Mitov, M.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Mykytiuk, T. V.

Natarajan, L.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Nonaka, T.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Resihetnyaka, V.

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Reznikova, Yu.

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Sanford, R.

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

Serbina, M.

Shi, J.

Shibaev, P.

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Stebler, B.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Su, L.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Sukhomlinova, L.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Sun, L.-D.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Sutherland, R.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

Taheri, B.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Tamaoki, N.

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Tondiglia, V.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Tsai, M.-S.

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

Urbas, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

van de Witte, P.

P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]

van Doren, H. A.

B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
[Crossref]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Vinvogradova, V.

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Walker, T. R.

Wang, C.-T.

Wang, L.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

White, T. J.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Wu, P.-C.

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Wu, S. T.

Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
[Crossref] [PubMed]

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Wu, T. X.

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Wu, Y.-C.

Xue, C.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Yamaguchi, R.

Yan, C.-H.

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

Yang, D.-K.

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Yaroshchuk, O.

Yaroshchuk, O. V.

Yu, H.

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

Zheng, Y.-B.

Zhou, Y.

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Zugenmaier, P.

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Adv. Mater. (1)

T. J. White, S. A. Cazzell, A. S. Freer, D.-K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y.-G. Fuh, M.-S. Tsai, L.-J. Huang, and T.-C. Liu, “Optically switchable gratings based on polymer-dispersed liquid crystal films doped with a guest–host dye,” Appl. Phys. Lett. 74(18), 2572–2574 (1999).
[Crossref]

Chem. Commun. (Camb.) (1)

M. Mathews and N. Tamaoki, “Reversibly tunable helicity induction and inversion in liquid crystal self-assembly by a planar chiroptic trigger molecule,” Chem. Commun. (Camb.) 24(24), 3609–3611 (2009).
[Crossref] [PubMed]

Chem. Mater. (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

J. Am. Chem. Soc. (6)

A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, and T. Bunning, “Optically switchable liquid crystal photonic structures,” J. Am. Chem. Soc. 126(42), 13580–13581 (2004).
[Crossref] [PubMed]

B. L. Feringa, W. F. Jager, B. de Lange, and E. W. Meijer, “Chiroptical molecular switch,” J. Am. Chem. Soc. 113(14), 5468–5470 (1991).
[Crossref]

B. L. Feringa, N. P. M. Huck, and H. A. van Doren, “Chiroptical switching between liquid crystalline phases,” J. Am. Chem. Soc. 117(39), 9929–9930 (1995).
[Crossref]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

L. Wang, H. Dong, Y. Li, C. Xue, L.-D. Sun, C.-H. Yan, and Q. Li, “Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles,” J. Am. Chem. Soc. 136(12), 4480–4483 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys. 104(6), 063102 (2008).
[Crossref]

J. Mater. Chem. (2)

P. van de Witte, M. Brehmer, and J. Lub, “LCD components obtained by patterning of chiral nematic polymer layers,” J. Mater. Chem. 9(9), 2087–2094 (1999).
[Crossref]

N. Katsonis, E. Lacaze, and A. Ferrarini, “Controlling chirality with helix inversion in cholesteric liquid crystals,” J. Mater. Chem. 22(15), 7088–7097 (2012).
[Crossref]

Liq. Cryst. (2)

I. Dierking, F. Giepelmann, P. Zugenmaier, W. Kuczynskit, S. T. Lagerwall, and B. Stebler, “Investigations of the structure of a cholesteric phase with a temperature induced helix inversion and of the succeeding Sc* phase in thin liquid crystal cells,” Liq. Cryst. 13(1), 45–55 (1992).
[Crossref]

Q. Hong, T. X. Wu, and S. T. Wu, “Optical wave propagation in a cholesteric liquid crystal using the finite element method,” Liq. Cryst. 30(3), 367–375 (2003).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (2)

V. Vinvogradova, A. Khizhnyaka, L. Kutulyaa, Yu. Reznikova, and V. Resihetnyaka, “Photoinduced charge of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Y.-J. Liu, P.-C. Wu, and W. Lee, “Spectral variations in selective reflection in cholesteric liquid crystals containing opposite-handed chiral dopants,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 596(1), 37–44 (2014).
[Crossref]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (3)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford, 1995).

S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

I. Dierking, Textures of Liquid Crystals (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The chemical structure of PSC-01. The azobenzene bonds are sensitive to UV exposure and they can experience trans-cis isomerization which affects the helical twisting power.
Fig. 2
Fig. 2 Measured and calculated reflection wavelength vs. PSC-01 concentration. Dots are measured data and red line represents fitting with Eq. (1). LC host: BL-038.
Fig. 3
Fig. 3 Mechanisms of opposite-handed cholesteric helix inversion.
Fig. 4
Fig. 4 The reflection band of the sample under 15.5-mW/cm2 UV exposure rapidly shifts toward a longer wavelength region. The lower end and higher end of detection limit is determined by the spectrometer and the glass substrates, respectively. As confirmed with a polarized light source, the reflected light was right-handed.
Fig. 5
Fig. 5 After 10 s, the reflection band of the sample shown in Fig. 4 reappears from the longer wavelength side and gradually shifts toward the shorter wavelength side. Although the reflection band seems similar, its handedness is actually opposite.
Fig. 6
Fig. 6 The inverse of the wavelength with respect to UV exposure time shows an exponential decay trend. The data agrees well with the fitted curve using Eq. (5).
Fig. 7
Fig. 7 The calculated λs through Eq. (6) vs. the concentration of PSC-01. LC host: BL-038.
Fig. 8
Fig. 8 A potentially high solubility photo-sensitive chiral dopant reported in [27].
Fig. 9
Fig. 9 The reaction time constant decreases linearly as the UV intensity increases.
Fig. 10
Fig. 10 The sample exposed with UV light (left) through a photomask (right). The two different repeating regions correspond to the right- and left-handed helix from top to button. The random lines in the sample are the oily streaks that occur in a typical cholesteric sample.

Tables (1)

Tables Icon

Table 1 Comparison of fitted (with opposite-handed mixture, sample 1) and measured helical twisting power of trans-PSC-01 (βt), cis-PSC-01 (βc) and S-5011 (βn) in BL-038. Cc0 and Cn are the concentration of PSC-01 and S-5011, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ 0 =n/ β c C c ,
λ 0 =n/( C c β c + C t β t C n β n ).
C t = C c0 e t/τ ,
C c = C c0 (1 e t/τ ).
λ 0 1 =( C t0 e t/τ ( β t β c )+ C t0 β c C n β n )/n.
λ s =2n/ C t0 ( β t β c ),

Metrics