Abstract

The precise tracking of micron sized colloidal particles - held in the vicinity of each other using optical tweezers - is an elegant way to gain information about the particle-particle pair interaction potential. The accuracy of the method, however, relies strongly on the tracking precision. Particularly the elimination of systematic errors in the position detection due to overlapping particle diffraction patterns remains a great challenge. Here we propose a template based particle finding algorithm that circumvents these problems by tracking only a fraction of the particle image that is insignificantly affected by nearby colloids. Under realistic experimental conditions we show that our algorithm significantly reduces systematic errors compared to standard tracking methods. Moreover our approach should in principle be applicable to almost arbitrary shaped particles as the template can be adapted to any geometry.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate holographic imaging of colloidal particle pairs by Rayleigh-Sommerfeld reconstruction

David Kapfenberger, Adar Sonn-Segev, and Yael Roichman
Opt. Express 21(10) 12228-12237 (2013)

Fluctuations in closed-loop fluorescent particle tracking

Andrew J. Berglund, Kevin McHale, and Hideo Mabuchi
Opt. Express 15(12) 7752-7773 (2007)

Tracking rotational diffusion of colloidal clusters

Gary L. Hunter, Kazem V. Edmond, Mark T. Elsesser, and Eric R. Weeks
Opt. Express 19(18) 17189-17202 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
    [Crossref]
  2. J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
    [Crossref]
  3. J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
    [Crossref] [PubMed]
  4. R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
    [Crossref]
  5. M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
    [Crossref] [PubMed]
  6. J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487 (2005).
    [Crossref]
  7. J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
    [Crossref]
  8. P. Biancaniello and J. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
    [Crossref]
  9. M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
    [Crossref]
  10. F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
    [Crossref] [PubMed]
  11. O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
    [Crossref] [PubMed]
  12. J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
    [Crossref]
  13. G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
    [Crossref] [PubMed]
  14. C. Selhuber-Unkel, “Tracking cell-nanoparticle interactions,” J. Biomed. Nanotechnol. 5, 634–640 (2009).
    [Crossref]
  15. C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).
  16. A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
    [Crossref] [PubMed]
  17. B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
    [Crossref] [PubMed]
  18. J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011).
    [Crossref] [PubMed]
  19. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724–726 (2012).
    [Crossref] [PubMed]
  20. W. Rogers and J. Crocker, “A tunable line optical tweezers instrument with nanometer spatial resolution,” Rev. Sci. Instrum. 85, 043704 (2014).
    [Crossref] [PubMed]
  21. M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
    [Crossref] [PubMed]
  22. A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
    [Crossref]
  23. A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
    [Crossref]
  24. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
    [Crossref] [PubMed]
  25. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
    [Crossref] [PubMed]
  26. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” App. Opt. 36, 2107–2113 (1997).
    [Crossref]
  27. C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
    [Crossref]
  28. C. Zhang, G. Brügger, and F. Scheffold, “MATLAB code for template based tracking of colloids,” http://physics.unifr.ch/en/page/474/ (2015).
  29. J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
    [Crossref] [PubMed]
  30. J. Brujic, “Experimental study of stress transmission through particulate matter,” Ph.D. thesis, Cambridge University (2004).
  31. J. C. Russ, The Image Processing Handbook (CRC press, 2011).
  32. Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Optics Express 17, 4685–4704 (2009).
    [Crossref] [PubMed]
  33. M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
    [Crossref]
  34. M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Advances in colloid and interface science 136, 65–92 (2008).
    [Crossref]

2015 (1)

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

2014 (2)

A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
[Crossref] [PubMed]

W. Rogers and J. Crocker, “A tunable line optical tweezers instrument with nanometer spatial resolution,” Rev. Sci. Instrum. 85, 043704 (2014).
[Crossref] [PubMed]

2012 (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724–726 (2012).
[Crossref] [PubMed]

2011 (2)

J. Fung, K. E. Martin, R. W. Perry, D. M. Kaz, R. McGorty, and V. N. Manoharan, “Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy,” Opt. Express 19, 8051–8065 (2011).
[Crossref] [PubMed]

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

2010 (1)

2009 (4)

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Optics Express 17, 4685–4704 (2009).
[Crossref] [PubMed]

C. Selhuber-Unkel, “Tracking cell-nanoparticle interactions,” J. Biomed. Nanotechnol. 5, 634–640 (2009).
[Crossref]

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

2008 (3)

M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
[Crossref]

M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Advances in colloid and interface science 136, 65–92 (2008).
[Crossref]

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

2007 (1)

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
[Crossref]

2006 (3)

A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
[Crossref]

J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
[Crossref]

P. Biancaniello and J. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[Crossref]

2005 (2)

J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487 (2005).
[Crossref]

B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
[Crossref] [PubMed]

2004 (1)

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

2003 (1)

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

2000 (3)

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

1999 (1)

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

1997 (1)

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” App. Opt. 36, 2107–2113 (1997).
[Crossref]

1996 (1)

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

1995 (1)

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[Crossref]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

1991 (1)

Addas, K.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Arauz-Lara, J.

J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
[Crossref]

A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Axner, O.

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” App. Opt. 36, 2107–2113 (1997).
[Crossref]

Baumgartl, J.

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
[Crossref]

J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487 (2005).
[Crossref]

Bechinger, C.

A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
[Crossref]

J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
[Crossref]

J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487 (2005).
[Crossref]

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

Bernheim-Groswasser, A.

A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
[Crossref] [PubMed]

Biancaniello, P.

P. Biancaniello and J. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[Crossref]

Brügger, G.

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

Brujic, D.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

Brujic, J.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

J. Brujic, “Experimental study of stress transmission through particulate matter,” Ph.D. thesis, Cambridge University (2004).

Brunner, M.

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

Brzobohatý, O.

Carter, B.

B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
[Crossref] [PubMed]

Cižmár, T.

Crocker, J.

W. Rogers and J. Crocker, “A tunable line optical tweezers instrument with nanometer spatial resolution,” Rev. Sci. Instrum. 85, 043704 (2014).
[Crossref] [PubMed]

P. Biancaniello and J. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[Crossref]

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

Dholakia, K.

Dinsmore, A.

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

Dobnikar, J.

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

Dogic, Z.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Edwards, S.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

Egelhaaf, S. U.

M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Advances in colloid and interface science 136, 65–92 (2008).
[Crossref]

Elmahdy, M.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Fällman, E.

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” App. Opt. 36, 2107–2113 (1997).
[Crossref]

Flynn, N.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Fraden, S.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Froufe-Pérez, L.

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

Fung, J.

Gao, Y.

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Optics Express 17, 4685–4704 (2009).
[Crossref] [PubMed]

Gisler, T.

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

Gong, T.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Grier, D.

M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
[Crossref]

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

Grier, D. G.

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
[Crossref]

Grinev, D.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

Gross, S.

B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
[Crossref] [PubMed]

Gutsche, C.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Gyger, M.

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

Hagan, M.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Han, Y.

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
[Crossref]

Harting, J.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Hopkinson, I.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

Huang, F.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Jenkins, M. C.

M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Advances in colloid and interface science 136, 65–92 (2008).
[Crossref]

Kaplan, P.

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

Karásek, V.

Käs, J.

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

Kaz, D. M.

Kegler, K.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Keyser, U.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Kilfoil, M. L.

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Optics Express 17, 4685–4704 (2009).
[Crossref] [PubMed]

Kim, Y.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Kitamura, N.

Koshioka, M.

Kremer, F.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Krueger, M.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Lobaskin, V.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Lubensky, T.

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

Makse, H.

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

Manoharan, V. N.

Marr, D.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Martin, K. E.

Masuhara, H.

Matteo, J.

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

Mazilu, M.

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

McGorty, R.

Mio, C.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Misawa, H.

Netz, R.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Otto, O.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724–726 (2012).
[Crossref] [PubMed]

Perry, R. W.

Polin, M.

M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
[Crossref]

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
[Crossref]

Ramírez-Saito, A.

A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
[Crossref]

Rauscher, M.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Rogers, W.

W. Rogers and J. Crocker, “A tunable line optical tweezers instrument with nanometer spatial resolution,” Rev. Sci. Instrum. 85, 043704 (2014).
[Crossref] [PubMed]

Roichman, Y.

A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
[Crossref] [PubMed]

M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
[Crossref]

Rückerl, F.

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

Rudhall, A.

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

Ruiz-García, J.

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

Russ, J. C.

J. C. Russ, The Image Processing Handbook (CRC press, 2011).

Sáenz, J.

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

Sasaki, K.

Scheffold, F.

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, “Tracking cell-nanoparticle interactions,” J. Biomed. Nanotechnol. 5, 634–640 (2009).
[Crossref]

Semenov, I.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Shubeita, G.

B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
[Crossref] [PubMed]

Šiler, M.

Sonn-Segev, A.

A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
[Crossref] [PubMed]

Stangner, T.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Terray, A.

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Ueberschär, O.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Valentine, M.

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

van Blaaderen, A.

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[Crossref]

Velasco, E.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Verma, R.

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

von Grünberg, H.-H.

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

Ward, A.

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

Weeber, R.

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Weeks, E.

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

Weitz, D.

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

Wiltzius, P.

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[Crossref]

Wright, E.

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

Yodh, A.

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

Zemánek, P.

Advances in colloid and interface science (1)

M. C. Jenkins and S. U. Egelhaaf, “Confocal microscopy of colloidal particles: towards reliable, optimum coordinates,” Advances in colloid and interface science 136, 65–92 (2008).
[Crossref]

App. Opt. (1)

E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” App. Opt. 36, 2107–2113 (1997).
[Crossref]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992).
[Crossref] [PubMed]

Europhys. Lett. (1)

J. Baumgartl and C. Bechinger, “On the limits of digital video microscopy,” Europhys. Lett. 71, 487 (2005).
[Crossref]

Faraday Discuss. (1)

J. Brujic, S. Edwards, D. Grinev, I. Hopkinson, D. Brujic, and H. Makse, “3d bulk measurements of the force distribution in a compressed emulsion system,” Faraday Discuss. 123, 207 (2003).
[Crossref] [PubMed]

J. Biomed. Nanotechnol. (1)

C. Selhuber-Unkel, “Tracking cell-nanoparticle interactions,” J. Biomed. Nanotechnol. 5, 634–640 (2009).
[Crossref]

J. Colloid Interface Sci. (2)

M. Gyger, F. Rückerl, J. Käs, and J. Ruiz-García, “Errors in two particle tracking at close distances,” J. Colloid Interface Sci. 326, 382–386 (2008).
[Crossref] [PubMed]

J. Crocker and D. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996).
[Crossref]

J. Phys.: Condens. Matter (1)

C. Gutsche, M. Elmahdy, K. Kegler, I. Semenov, T. Stangner, O. Otto, O. Ueberschär, U. Keyser, M. Krueger, M. Rauscher, R. Weeber, J. Harting, Y. Kim, V. Lobaskin, R. Netz, and F. Kremer, “Micro-rheology on (polymer-grafted) colloids using optical tweezers,” J. Phys.: Condens. Matter 23, 184114 (2011).

Macromolecules (1)

R. Verma, J. Crocker, T. Lubensky, and A. Yodh, “Attractions between hard colloidal spheres in semiflexible polymer solutions,” Macromolecules 33, 177 (2000).
[Crossref]

Nat. Commun. (1)

G. Brügger, L. Froufe-Pérez, F. Scheffold, and J. Sáenz, “Controlling dispersion forces between small particles with artificially created random light fields,” Nat. Commun. 6, 7460 (2015).
[Crossref] [PubMed]

Nat. Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724–726 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Optics Express (1)

Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Optics Express 17, 4685–4704 (2009).
[Crossref] [PubMed]

Phys. Biol. (1)

B. Carter, G. Shubeita, and S. Gross, “Tracking single particles: a user-friendly quantitative evaluation,” Phys. Biol. 2, 60–72 (2005).
[Crossref] [PubMed]

Phys. Rev. E (2)

A. Ramírez-Saito, C. Bechinger, and J. Arauz-Lara, “Optical microscopy measurement of pair correlation functions,” Phys. Rev. E 74, 030401 (2006).
[Crossref]

M. Polin, Y. Roichman, and D. Grier, “Autocalibrated colloidal interaction measurements with extended optical traps,” Phys. Rev. E 77, 051401 (2008).
[Crossref]

Phys. Rev. Lett. (4)

F. Huang, K. Addas, A. Ward, N. Flynn, E. Velasco, M. Hagan, Z. Dogic, and S. Fraden, “Pair potential of charged colloidal stars,” Phys. Rev. Lett. 102, 108302 (2009).
[Crossref] [PubMed]

M. Brunner, J. Dobnikar, H.-H. von Grünberg, and C. Bechinger, “Direct measurement of three-body interactions amongst charged colloids,” Phys. Rev. Lett. 92, 078301 (2004).
[Crossref] [PubMed]

J. Crocker, J. Matteo, A. Dinsmore, and A. Yodh, “Entropic attraction and repulsion in binary colloids probed with a line optical tweezer,” Phys. Rev. Lett. 82, 4352 (1999).
[Crossref]

J. Crocker, M. Valentine, E. Weeks, T. Gisler, P. Kaplan, A. Yodh, and D. Weitz, “Two-point microrheology of inhomogeneous soft materials,” Phys. Rev. Lett. 85, 888 (2000).
[Crossref] [PubMed]

Physical Review E (1)

M. Polin, D. G. Grier, and Y. Han, “Colloidal electrostatic interactions near a conducting surface,” Physical Review E 76, 041406 (2007).
[Crossref]

Proc. SPIE (1)

J. Baumgartl, A. Rudhall, M. Mazilu, E. Wright, and K. Dholakia, “Revisiting transverse optical binding,” Proc. SPIE 7400, 74001D (2009).
[Crossref]

Rev. Sci. Instrum. (3)

W. Rogers and J. Crocker, “A tunable line optical tweezers instrument with nanometer spatial resolution,” Rev. Sci. Instrum. 85, 043704 (2014).
[Crossref] [PubMed]

P. Biancaniello and J. Crocker, “Line optical tweezers instrument for measuring nanoscale interactions and kinetics,” Rev. Sci. Instrum. 77, 113702 (2006).
[Crossref]

C. Mio, T. Gong, A. Terray, and D. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[Crossref]

Science (1)

A. van Blaaderen and P. Wiltzius, “Real-space structure of colloidal hard-sphere glasses,” Science 270, 1177–1179 (1995).
[Crossref]

Soft Matter (2)

A. Sonn-Segev, A. Bernheim-Groswasser, and Y. Roichman, “Extracting the dynamic correlation length of actin networks from microrheology experiments,” Soft Matter 10, 8324–8329 (2014).
[Crossref] [PubMed]

J. Baumgartl, J. Arauz-Lara, and C. Bechinger, “Like-charge attraction in confinement: myth or truth?”; Soft Matter 2, 631–635 (2006).
[Crossref]

Other (3)

C. Zhang, G. Brügger, and F. Scheffold, “MATLAB code for template based tracking of colloids,” http://physics.unifr.ch/en/page/474/ (2015).

J. Brujic, “Experimental study of stress transmission through particulate matter,” Ph.D. thesis, Cambridge University (2004).

J. C. Russ, The Image Processing Handbook (CRC press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental setup is built around a commercial Nikon Eclipse TS100 microscope. A NIR laser operating at λ = 1064 nm (shown in red) is used for the optical tweezing of the particles. Two acousto-optical deflectors (AOD) are employed to steer the laser beam at will. The white light illumination from above (depicted in yellow) is responsibele for the image acquisition. The inset shows a sketch of the sample cell: The colloids are trapped at the bottom of a sandwich construction using the technique of time shared optical trapping [25–27].
Fig. 2
Fig. 2 Illustration of our template based tracking algorithm. (a) Image to be analyzed. The dashed lines illustrate the C-shaped particle regions that we use for tracking. (b) Backtransformed Fourier-convolved image according to Eq. 4 with a C-shape orientation αC optimal for the localisation of particle C (and equally suited for A). The bright spots correspond to the particle locations and reflect the first term in Eq. 4. The fuzzy shaped coronas surrounding the spots illustrate the second sum in Eq. 4. (c) By choosing an appropriate threshold one can discriminate between particle locations and fuzzy coronas which allows for an precise and unbiased localisation of particle C. The same procedure is repeated to localize particle B using αB = αCπ.
Fig. 3
Fig. 3 Illustration of the experimental procedure to quantify position errors due to a certain tracking algorithm. (a) Two isolated particles are used to determine the true position P ¯ r of particle B relative to A. (b) In a subsequent experiment a third particle C is trapped in the vicinity of particle B and its position periodically scanned. If particles C and B are close enough for their diffraction patterns to overlap conventional tracking algorithms start to fail and the instantaneous position Pr(k) deviates form the true position P ¯ r.
Fig. 4
Fig. 4 Tracking errors Δr/(2R) vs. instantaneous separation distance r are shown as solid lines [6, 7]. Dashed lines show the average values. (a) Error estimation for the particle tracking data obtained with the conventional Crocker and Grier [1] tracking algorithm (grey line) and with the more accurate SSF-refinement technique method [34] (red line). (b) Error according to our template based tracking method. The inset illustrates the C-shaped particle regions that we use for tracking. The near-contact area where interference effects are the most pronounced is excluded form the tracking analysis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = i = 1 n δ ( r r i ) S ( r )
i = 1 n δ ( r r i ) = 1 [ I ˜ ( k ) S ˜ ( k ) ]
I ( r ) = i = 1 n δ ( r r i ) S C ( r , α ) + i = 1 n δ ( r r i ) S L ( r , α ) .
1 [ I ˜ ( k ) S ˜ C ( k , α ) ] = i = 1 n δ ( r r i ) + i = 1 n 1 [ S ˜ L ( k ) S ˜ C ( k , α ) ] δ ( r r i ) .

Metrics