Abstract

This paper demonstrates the fabrication and measurements of flexible photonic lightwave circuits in glass substrates. Using temporally and spatially shaped ultrafast laser pulses, highly symmetrical and low-loss optical waveguides were written in flexible glass substrates with thicknesses ranging from 25 µm to 100 µm. The waveguide propagation loss, measured by optical frequency domain reflectometry, was 0.11 dB/cm at 1550 nm telecommunication wavelength. The bend loss of the waveguide is negligible at a radius of curvature of 1.5 cm or greater. Additionally, the waveguides are thermally stable up to 400°C. This paper presents alternatives to fabricating flexible photonics in traditionally used polymeric materials.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing

Weijia Yang, Costantino Corbari, Peter G. Kazansky, Koichi Sakaguchi, and Isabel C.S. Carvalho
Opt. Express 16(20) 16215-16226 (2008)

Heat-resistant flexible-film optical waveguides from fluorinated polyimides

Tohru Matsuura, Junya Kobayashi, Shinji Ando, Tohru Maruno, Shigekuni Sasaki, and Fumio Yamamoto
Appl. Opt. 38(6) 966-971 (1999)

Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass

Tamilarasan Sabapathy, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan, and Stephen J. Beecher
Opt. Mater. Express 2(11) 1556-1561 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. Deshazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31(24), 3915–3926 (2013).
    [Crossref]
  2. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  3. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
    [Crossref]
  4. S. Garner, “Ultra-slim flexible glass for electronic applications,” in 2012 MRS Fall Meeting & Exhibit, 2012.
  5. S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
    [Crossref]
  6. S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).
  7. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref] [PubMed]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  9. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol. 21(1), 246–253 (2003).
    [Crossref]
  10. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  11. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29(22), 2626–2628 (2004).
    [Crossref] [PubMed]
  12. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [Crossref] [PubMed]
  13. J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
    [Crossref]
  14. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
    [Crossref]
  15. R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
    [Crossref] [PubMed]
  16. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  17. K. J. Kim, J. W. Kim, M. C. Oh, Y. O. Noh, and H. J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
    [Crossref] [PubMed]
  18. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
    [Crossref]
  19. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  20. S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
    [Crossref]
  21. S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
    [Crossref]
  22. S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
    [Crossref]
  23. H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
    [Crossref]
  24. S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
    [Crossref]
  25. L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  26. S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
    [Crossref] [PubMed]
  27. J. M. Burst, W. L. Rance, D. M. Meysing, C. A. Wolden, W. K. Metzger, S. M. Garner, P. Cimo, T. M. Barnes, T. A. Gessert, and M. O. Reese, “Performance of transparent conductors on flexible glass and plastic substrates,” 2014 IEEE-PVSC, Denver, June 9–13, 2014.
  28. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  29. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
    [Crossref] [PubMed]
  30. B. McMillen, M. Li, S. Huang, B. Zhang, and K. P. Chen, “Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass,” Opt. Lett. 39(12), 3579–3582 (2014).
    [Crossref] [PubMed]
  31. H. Jerrard, “Optical compensators for measurement of elliptical polarization,” J. Opt. Soc. Am. 38(1), 35–57 (1948).
    [Crossref]
  32. R. Plumb, “Analysis of elliptically polarized light,” J. Opt. Soc. Am. 50(9), 892 (1960).
    [Crossref]
  33. B. R. Grunstra and H. B. Perkins, “A method for the measurement of optical retardation angles near 90 degrees,” Appl. Opt. 5(4), 585–587 (1966).
    [Crossref] [PubMed]

2015 (2)

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

2014 (3)

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
[Crossref]

B. McMillen, M. Li, S. Huang, B. Zhang, and K. P. Chen, “Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass,” Opt. Lett. 39(12), 3579–3582 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (2)

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

2011 (1)

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

2010 (2)

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

K. J. Kim, J. W. Kim, M. C. Oh, Y. O. Noh, and H. J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[Crossref] [PubMed]

2008 (2)

2007 (2)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32(17), 2559–2561 (2007).
[Crossref] [PubMed]

2005 (2)

S. Eaton, H. Zhang, P. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005).
[Crossref] [PubMed]

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

2004 (2)

2003 (2)

2002 (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

2001 (1)

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

1996 (1)

1966 (1)

1960 (1)

1948 (1)

Amb, C. M.

Arai, A.

Barnes, T. M.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Beach, J. D.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Borrelli, N. F.

Bosman, E.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Bovatsek, J.

Burst, J. M.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Byrne, O.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Cerullo, G.

Chan, Y.-J.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Chang, S. D.

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Chase, C.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Chen, K. P.

Chen, K. T.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Chen, W.-J.

Chiodo, N.

Christodoulides, D. N.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Cimo, P.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dangel, R.

Danto, S.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Davis, K. M.

De Silvestri, S.

Deshazer, D. J.

Ding, J.-M.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Dowling, D. P.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Dreisow, F.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Eaton, S.

Eaton, S. M.

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

Florea, C.

Flueraru, C.

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Fruehauf, N.

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

Garner, S.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
[Crossref]

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Garner, S. M.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gessert, T. A.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Glaesemann, S.

S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
[Crossref]

Grover, C. P.

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Grunstra, B. R.

He, M.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Heinrich, M.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Herman, P.

Herman, P. R.

Hirao, K.

Ho, S.

Hoehla, S.

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

Hohmann, M.

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

Horst, F.

Hsieh, Y.-M.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Hsu, R.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Hu, J.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

Hu, J.-P.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Huang, S.

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jerrard, H.

Jubin, D.

Keil, R.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Killi, A.

Kim, J. W.

Kim, K. J.

Kopf, D.

Kuhls, O.

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

Kuo, K. T.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Lai, C.-C.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Lai, Y. C.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Lan, L.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Laporta, P.

Lederer, M.

Lee, H. J.

Lee, Y.-Z.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Li, J.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

Li, L.

Li, M.

Li, X.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
[Crossref]

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Liao, Y. C.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Lin, H.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

Lin, J. C.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Liu, C. W.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Liu, J. R.

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Lo, P. Y.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Lu, N.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Ma, Z.

Mahabaduge, H. P.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Marangoni, M.

Marshall, D.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Matusick, J.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McMillen, B.

Meier, N.

Metzger, W. K.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Meysing, D. M.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Missinne, J.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Miura, K.

Morgner, U.

Moschak, P.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Musgraves, J. D.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Ng, M. L.

Noh, Y. O.

Nolte, S.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Offrein, B. J.

Oh, M. C.

Osellame, R.

Perkins, H. B.

Pertsch, T.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Plumb, R.

Polli, D.

Qiao, S.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Ramponi, R.

Rance, W. L.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Reese, M. O.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Richardson, K.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Schindler, A.

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

Shah, L.

Sheehan, S.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Shiu, J. W.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Sorenson, M.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Steiner, J.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Streltsov, A. M.

Sugimoto, N.

Sung, C. F.

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

Surolia, P. K.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Svelto, O.

Swatowski, B. W.

Switzer, J.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Szameit, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Taccheo, S.

Thampi, K. R.

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Tosch, J.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Tsai, Y. S.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Tünnermann, A.

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Valle, G. D.

Van Daele, P.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Van Hoe, B.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Van Steenberge, G.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Vanfleteren, J.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

Weidner, W. K.

Weiss, J.

Winick, K. A.

Wolden, C. A.

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Wu, K.-W.

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

Yepez, D.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

Yoshino, F.

Zhang, B.

Zhang, H.

Zhang, P.

Zhang, Z. Y.

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Zhou, W.

Zou, Y.

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Adv. Mater. (1)

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. P. Mahabaduge, W. L. Rance, J. M. Burst, M. O. Reese, D. M. Meysing, C. A. Wolden, J. Li, J. D. Beach, T. A. Gessert, W. K. Metzger, S. Garner, and T. M. Barnes, “High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates,” Appl. Phys. Lett. 106(13), 133501 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Garner, S. Glaesemann, and X. Li, “Ultra-slim flexible glass for roll-to-roll electronic device fabrication,” Appl. Phys., A Mater. Sci. Process. 116(2), 403–407 (2014).
[Crossref]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6(1), 54–68 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technol. Lett. 22(5), 287–289 (2010).
[Crossref]

J. Disp. Technol. (3)

S. M. Garner, K.-W. Wu, Y. C. Liao, J. W. Shiu, Y. S. Tsai, K. T. Chen, Y. C. Lai, C.-C. Lai, Y.-Z. Lee, J. C. Lin, X. Li, and P. Cimo, “Cholesteric liquid crystal display with flexible glass substrates,” J. Disp. Technol. 9(8), 644–650 (2013).
[Crossref]

S. M. Garner, M. He, P. Y. Lo, C. F. Sung, C. W. Liu, Y.-M. Hsieh, R. Hsu, J.-M. Ding, J.-P. Hu, Y.-J. Chan, J. C. Lin, X. Li, M. Sorenson, J. Li, P. Cimo, and K. T. Kuo, “Electrophoretic displays fabricated on ultra-slim flexible glass substrates,” J. Disp. Technol. 8(10), 590–595 (2012).
[Crossref]

S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, and N. Fruehauf, “Active matrix color-LCD on 75 mm thick flexible glass substrates,” J. Disp. Technol. 8(6), 309–316 (2012).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

L. Lan, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Commun. (1)

J. R. Liu, Z. Y. Zhang, S. D. Chang, C. Flueraru, and C. P. Grover, “Directly writing in fused of 1-to-N optical waveguide power splitters silica glass using a femtosecond laser,” Opt. Commun. 253(4-6), 315–319 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (1)

Sci. Rep. (1)

R. Keil, M. Heinrich, F. Dreisow, T. Pertsch, A. Tünnermann, S. Nolte, D. N. Christodoulides, and A. Szameit, “All-optical routing and switching for three-dimensional photonic circuitry,” Sci. Rep. 1, 94 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. Sheehan, P. K. Surolia, O. Byrne, S. Garner, P. Cimo, X. Li, D. P. Dowling, and K. R. Thampi, “Flexible glass substrate based dye sensitized solar cells,” Sol. Energy Mater. Sol. Cells 132, 237–244 (2015).
[Crossref]

Other (3)

J. M. Burst, W. L. Rance, D. M. Meysing, C. A. Wolden, W. K. Metzger, S. M. Garner, P. Cimo, T. M. Barnes, T. A. Gessert, and M. O. Reese, “Performance of transparent conductors on flexible glass and plastic substrates,” 2014 IEEE-PVSC, Denver, June 9–13, 2014.

S. Garner, J. Tosch, J. Matusick, X. Li, D. Marshall, C. Chase, J. Steiner, D. Yepez, J. Switzer, and P. Moschak, “Flexible glass substrates for continuous manufacturing,” in Flexible Electronics and Displays Conference (Phoenix, 2011).

S. Garner, “Ultra-slim flexible glass for electronic applications,” in 2012 MRS Fall Meeting & Exhibit, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the experiment setup for ultrafast laser writing.
Fig. 2
Fig. 2 Schematic of the experiment setup for sample characterization.
Fig. 3
Fig. 3 (a) Waveguide formed using an 80X aberration-corrected objective under ‘perfect focusing’ (Top: image of the waveguide cross section; Bottom: Guided mode profile at 1550 nm); (b) Waveguide formed by spatially shaped laser beam to introduce strong astigmatism to control the focal volume (Top: image of the waveguide cross section; Bottom: Guided mode profile at 1550 nm); (c) From top to bottom, waveguides formed in 100 µm (top), 50 µm, 35 µm, and 25 µm (bottom) thick flexible glass substrates.
Fig. 4
Fig. 4 (a) Propagation loss measurement by OFDR. Propagation loss of a waveguide in an 11.4 cm long flexible glass substrate is indicated by the slope of the fitted data between the two facets. (b) Waveguide propagation losses measured on 10 waveguides (WG) written using the same processing conditions as in (a).
Fig. 5
Fig. 5 Photographs of flexible glass waveguides written in a (a) 100μm thick substrate with 13.5cm bending radius; and (b) 50μm thick substrate with 2.1cm bending radius. (c) 35µm thick substrate with 1.0cm bending radius; (d) The same 35µm thick substrate with 1.0cm bending radius.
Fig. 6
Fig. 6 Insertion loss of the ultrafast-lase-written waveguide in 25 µm, 35 µm, 50 µm and 100 µm thick flexible glass substrates with bending radius down to 0.67cm. Inset: insertion loss fluctuation for 100µm thick substrate.
Fig. 7
Fig. 7 Mode profiles (top) and microscope images (bottom) of waveguides written with (a) 1000 nJ and (b) 1160 nJ laser pulses, after 1 hour baking for each temperature. (c) Waveguide attenuation for each temperature, written with 1000 nJ pulses. (d) Waveguide attenuation for each temperature, written with 1160 nJ pulses.
Fig. 8
Fig. 8 (a) Top view of ultrafast laser written Bragg grating waveguides in flexible glass substrate using modulation with 25% duty cycle. (b) Bragg grating reflection spectra after two heating cycles.
Fig. 9
Fig. 9 Bragg grating reflection spectra for two perpendicular polarized light.

Metrics