Abstract

We have experimentally demonstrated broadband tuneable four-wave mixing in AlGaAs nanowires with the widths ranging between 400 and 650 nm and lengths from 0 to 2 mm. We performed a detailed experimental study of the parameters influencing the FWM performance in these devices (experimental conditions and nanowire dimensions). The maximum signal-to-idler conversion range was 100 nm, limited by the tuning range of the pump source. The maximum conversion efficiency, defined as the ratio of the output idler power to the output signal power, was −38 dB. In support of our explanation of the experimentally observed trends, we present modal analysis and group velocity dispersion numerical analysis. This study is what we believe to be a step forward towards realization of all-optical signal processing devices.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
    [Crossref]
  2. C. Langrock, S. Kumar, J. E. McGeehan, A. Wilner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579–2592 (2006).
    [Crossref]
  3. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
    [Crossref]
  4. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
    [Crossref] [PubMed]
  5. L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30, 3760–3770 (2012).
    [Crossref]
  6. B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. Richardson, and G. M. Carter, “All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
    [Crossref]
  7. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  8. C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, G. Fiol, D. Arsenijević, C. Schubert, and D. Bimberg, “40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier,” Opt. Express 19, 3788–3798 (2011).
    [Crossref] [PubMed]
  9. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
    [Crossref] [PubMed]
  10. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
    [Crossref]
  11. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
    [Crossref] [PubMed]
  12. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [Crossref]
  13. D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chacker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
    [Crossref] [PubMed]
  14. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
    [Crossref] [PubMed]
  15. W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.
  16. W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
    [Crossref]
  17. P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
    [Crossref]
  18. K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
    [Crossref] [PubMed]
  19. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291–5297 (2014).
    [Crossref] [PubMed]
  20. G. A. Porkolab, P. Apiratikul, B. Wang, S. H. Guo, and C. J. Richardson, “Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
    [Crossref] [PubMed]
  21. K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.
  22. P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014).
    [Crossref] [PubMed]
  23. M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
    [Crossref]
  24. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
    [Crossref]
  25. C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
    [Crossref]

2014 (3)

2013 (1)

2012 (2)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultrahigh speed optical systems and networks,” J. Lightwave Technol. 30, 3760–3770 (2012).
[Crossref]

2011 (5)

2010 (4)

K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
[Crossref] [PubMed]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[Crossref]

P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
[Crossref]

2007 (2)

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

2006 (3)

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

1994 (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Aimez, V.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chacker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[Crossref] [PubMed]

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
[Crossref]

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Aitchison, J. S.

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
[Crossref] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[Crossref] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Al-Hemyari, K.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Apiratikul, P.

Arès, R.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chacker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[Crossref] [PubMed]

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
[Crossref]

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Arsenijevic, D.

Astar, W.

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. Richardson, and G. M. Carter, “All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
[Crossref]

P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[Crossref]

Bimberg, D.

Bogoni, A.

Boudra, P.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Camasta, M. C.

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Cannon, B. M.

Carter, G. M.

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. Richardson, and G. M. Carter, “All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide,” J. Lightwave Technol. 31, 952–966 (2013).
[Crossref]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[Crossref]

P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

Chacker, M.

Chen, Z.-Y.

Choi, D. Y.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Chretién, P.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Christian, H.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Christodoulides, D. N.

Cristiani, I.

De Angelis, C.

Delprat, S.

Dolgaleva, K.

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
[Crossref] [PubMed]

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Doucet, S.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Duchesne, D.

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

El-Ganainy, R.

Fejer, M. M.

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Feude, W.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Fiol, G.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Fujii, M.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Galili, M.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Grant, R. S.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Guo, S. H.

He, L.

Hu, H.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Hvam, J. M.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Ironside, C. N.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Iwanow, R.

Jeppersen, P.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Ji, H.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Jiang, H.-Y.

Jugessur, A.

Kang, J.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

Kennedy, G. T.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Koos, C.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Kultavewuti, P.

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Kumar, S.

Lacava, C.

Langrock, C.

LaRochelle, S.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Légaré, F.

Lemus, D.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Leuthold, J.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Lin, C.-H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Lin, H.-H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Locatelli, A.

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Mahmood, T.

McGeehan, J. E.

Meier, J.

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Meuer, C.

Minzioni, P.

Modotto, D.

Mohammed, W. S.

Mohsenin, T.

Mojahedi, M.

Morandotti, R.

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Mulvard, H.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Murphy, T. E.

P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014).
[Crossref] [PubMed]

P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[Crossref]

Ng, W. C.

Ng, W.-C.

K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
[Crossref] [PubMed]

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Oxenløwe, L. K.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Peucheret, C.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Pfrang, A.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Porkolab, G.

Porkolab, G. A.

Poulton, C.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Pozzi, F.

Pu, M.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Pusino, V.

Qian, L.

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

K. Dolgaleva, W.-C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
[Crossref] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[Crossref] [PubMed]

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Richardson, C. J.

Rusch, L. A.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Rutkowska, K. A.

Salamo, G.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Samarelli, A.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Sarrafi, P.

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Schimmel, T.

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

Schmeckebier, H.

Schmidt-Langhorst, C.

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Schubert, C.

Sibbett, W.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Siviloglou, G. A.

Sorel, M.

Sorell, M.

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Stanley, C. R.

Stegeman, G. I.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[Crossref] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Suntsov, S.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Volatier, M.

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chacker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[Crossref] [PubMed]

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
[Crossref]

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Wang, B.

Wathen, J. J.

Willner, A. E.

Wilner, A.

Wu, X.

Xu, Q.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

Yan, L.

Yang, C. C.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

Yi, A.

Yvind, K.

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

Zhu, W.

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

IEEE J. Quantum Electron. (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

C. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Feude, “Radiation modes and roughness loss in high-index-contrast waveguides,” IEEE J. Sel. Topics Quantum Electron. 12, 1303–1321 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[Crossref]

P. Apiratikul, W. Astar, T. E. Murphy, and G. M. Carter, “10-Gb/s wavelength and pulse format conversion using four-wave mixing in a GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

Int. J. Nonlinear Opt. Phys. (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibbett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Y. Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev. 6, 97–114 (2012).
[Crossref]

Nanotechnology (1)

M. Volatier, D. Duchesne, R. Morandotti, R. Arès, and V. Aimez, “Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP etching with N2-promoted passivation,” Nanotechnology 21, 134014 (2010).
[Crossref]

Nat. Commun. (1)

F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorell, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296–303 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[Crossref]

Opt. Express (9)

C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, G. Fiol, D. Arsenijević, C. Schubert, and D. Bimberg, “40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier,” Opt. Express 19, 3788–3798 (2011).
[Crossref] [PubMed]

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[Crossref] [PubMed]

D. Duchesne, K. A. Rutkowska, M. Volatier, F. Légaré, S. Delprat, M. Chacker, D. Modotto, A. Locatelli, C. De Angelis, M. Sorel, D. N. Christodoulides, G. Salamo, R. Arès, V. Aimez, and R. Morandotti, “Second harmonic generation in AlGaAs photonic wires using low power continuous wave light,” Opt. Express 19, 12408–12417 (2011).
[Crossref] [PubMed]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[Crossref] [PubMed]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian, H. Mulvard, K. Yvind, J. M. Hvam, P. Jeppersen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express 21, 19886–19894 (2011).
[Crossref]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291–5297 (2014).
[Crossref] [PubMed]

G. A. Porkolab, P. Apiratikul, B. Wang, S. H. Guo, and C. J. Richardson, “Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
[Crossref] [PubMed]

P. Apiratikul, J. J. Wathen, G. A. Porkolab, B. Wang, L. He, T. E. Murphy, and C. J. Richardson, “Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides,” Opt. Express 22, 26814–26824 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (3)

W.-C. Ng, Q. Xu, K. Dolgaleva, S. Doucet, D. Lemus, P. Chretién, W. Zhu, L. A. Rusch, S. LaRochelle, L. Qian, and J. S. Aitchison, “Error-free 0.16π-XPM-based all-optical wavelength conversion in a 1-cm-long AlGaAs waveguide,” in 23rd Annual Meeting of IEEE Photonics Society, 2010.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

K. Dolgaleva, P. Sarrafi, P. Kultavewuti, J. S. Aitchison, L. Qian, M. Volatier, R. Arès, and V. Aimez, “Highly efficient broadly tunable four-wave mixing in AlGaAs nanowires,” in CLEO Conference, San Jose, CA (USA), 2013.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1:
Fig. 1:

AlGaAs nanowires: (a) Composition and geometry; (b) Modal profile; (c) SEM image that shows a 200-nm-wide nanowire.

Fig. 2:
Fig. 2:

Tapered AlGaAs nanowire (top view).

Fig. 3:
Fig. 3:

Effective mode area: (a) as a function of the nanowire width at λ = 1550 nm; (b) as a function of wavelength for TE polarization for different values of the nanowire width. These values are 300, 400, 500, 600, 700, 800, and 1000 nm (bottom-to-top). The two limiting values, corresponding to the bottom-most and top-most curves, are labeled on the graph.

Fig. 4:
Fig. 4:

GVD as a function of wavelength for the values of the nanowire width in the range between 300 and 800 nm, as marked on the legend: (a) for the fundamental TE mode, (b) for the fundamental TM mode.

Fig. 5:
Fig. 5:

GVD as a function of the waveguide width for a fixed wavelength 1550 nm.

Fig. 6:
Fig. 6:

Normalized phase matching parameter as a function of the wavelength difference between the pump and signal for different nanowire width. The insets show the measured conversion efficiencies for a 550-nm-wide, 2-mm-long nanowire for the pump wavelength 1505 nm. (a) Pump and signal are TE-polarized; (b) TM-polarized. The results were obtained for the in-waveguide peak power value 1.8 W and the propagation loss values extracted from the measurements.

Fig. 7:
Fig. 7:

Propagation loss of the nanowires for TE and TM fundamental modes: (a) as a function of the nanowire width in the range of wavelengths around 1550 nm; (b) as a function of wavelength for a 400-nm-wide nanowire.

Fig. 8:
Fig. 8:

Schematic of the experimental setup to perform the four-wave mixing measurements.

Fig. 9:
Fig. 9:

(a) TE and (b) TM FWM spectra collected from a 400-nm-wide 1-mm-long nanowire. The pump wavelength was set to 1525 nm. The grey shaded areas on the graph represent a FWM peak appearing as a consequence of the secondary peak in the pump spectrum (pump artifact).

Fig. 10:
Fig. 10:

FWM spectra collected for a 550-nm-wide 2-mm-long nanowire at different values of the in-waveguide peak pump power: (a) 1.3 W; (b) 3.1 W; (c) 4 W. Both signal and pump were TE-polarized. The grey shaded areas on the graphs show a FWM peak arising from the pump artifact.

Fig. 11:
Fig. 11:

FWM spectra collected for a 2-µm-wide waveguide [(a) and (d)], taper-to-taper [(b) and (e)], and 550-nm-wide 1-mm-long nanowire [(c) and (f)] at different values of the pump wavelength: 1505 nm [(a)–(c)]; 1525 nm [(d)–(f)]. Both signal and pump were TE-polarized. The grey shaded areas on the graphs show a FWM peak arising from the pump artifact.

Fig. 12:
Fig. 12:

FWM spectra collected for the nanowires with different widths: (a) wnw = 400 nm; (b) wnw = 500 nm; (c) wnw = 550 nm; (d) wnw = 650 nm. The lengths of the devices were identical: l = 1 mm. Both signal and pump were TE-polarized. The wavelength of the pump was set to 1525 nm, as shown by the arrow on the plot. The values of the in-waveguide signal average and pump peak power were 18 mW and 1.8 W, respectively. The grey shaded areas on the graphs show a FWM peak arising from the pump artifact.

Fig. 13:
Fig. 13:

FWM spectra collected for the nanowires with different lengths for the pump wavelengths 1505 nm [(a)–(c)] and 1525 nm [(d)–(f)]. (a) and (d): lnw = 0 (taper-to-taper); (b) and (e): lnw = 1 mm; (c) and (f): lnw = 2 mm. The widths of the devices were identical: wnw = 550 nm. Both signal and pump were TE-polarized. The values of the in-waveguide signal average and pump peak power were 18 mW and 1.8 W, respectively. The grey shaded areas on the graphs show a FWM peak arising from the pump artifact.

Fig. 14:
Fig. 14:

FWM spectra collected for a 400-nm-wide 1-mm-long nanowire at different pump wavelengths: (a) 1505 nm; (b) 1515 nm; (c) 1525 nm; (d) 1565 nm; (e) 1575 nm. Both signal and pump were TE-polarized. The values of the in-waveguide signal average and pump peak power were 18 mW and 1.8 W, respectively. The grey shaded areas on the graphs shows a FWM peak arising from the pump artifact.

Fig. 15:
Fig. 15:

Measured conversion efficiency for a 550-nm-wide, 2-mm-long nanowire as a function of the pump wavelength. Different curves correspond to different signal wavelengths, as shown in the legend. Both signal and pump were TE-polarized. The values of the in-waveguide signal average and pump peak power were 18 mW and 1.8 W, respectively.

Tables (1)

Tables Icon

Table 1: Characteristic lengths associated with the nonlinear optical interactions in integrated optical devices.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L w = T 0 D Δ λ max
L eff = 1 e α L α ,
L NL = 1 γ P 0 ,
γ = 2 π n 2 λ 0 A eff
η = α 2 α 2 + κ 2 [ 1 + 4 e α L sin 2 ( κ L / 2 ) ( 1 e α L ) 2 ] ,

Metrics