Abstract

In this paper, we report a broad investigation of the optical properties of germanium (Ge) quantum-well devices. Our simulations show a significant increase of carrier density in the Ge quantum wells. Photoluminescence (PL) measurements show the enhanced direct-bandgap radiative recombination rates due to the carrier density increase in the Ge quantum wells. Electroluminescence (EL) measurements show the temperature-dependent properties of our Ge quantum-well devices, which are in good agreement with our theoretical models. We also demonstrate the PL measurements of Ge quantum-well microdisks using tapered-fiber collection method and quantify the optical loss of the Ge quantum-well structure from the measured PL spectra for the first time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature electroluminescence from Si microdisks with Ge quantum dots

Jinsong Xia, Yuuki Takeda, Noritaka Usami, Takuya Maruizumi, and Yasuhiro Shiraki
Opt. Express 18(13) 13945-13950 (2010)

Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots

Xuejun Xu, Takuya Maruizumi, and Yasuhiro Shiraki
Opt. Express 22(4) 3902-3910 (2014)

Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited]

David S. Sukhdeo, Donguk Nam, Ju-Hyung Kang, Mark L. Brongersma, and Krishna C. Saraswat
Photon. Res. 2(3) A8-A13 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011).
  2. M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in International Electron Devices Meeting (IEDM, 1995), pp. 241–244.
    [Crossref]
  3. E. Fei, E. Edwards, Y. Huo, X. Chen, S. Claussen, X. Liu, Y. Rong, T. Kamins, D. Miller, and J. S. Harris, “Low power SiGe electroabsorption modulators for optical interconnects,” in Advanced Photonics Congress, OSA Technical Digest (online) (OSA, 2012), paper IM4A.3.
    [Crossref]
  4. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
    [Crossref]
  5. S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
    [Crossref] [PubMed]
  6. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
    [Crossref]
  7. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
    [Crossref] [PubMed]
  8. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [Crossref] [PubMed]
  9. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref] [PubMed]
  10. H. K. Choi and C. A. Wang, “InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
    [Crossref]
  11. S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
    [Crossref]
  12. M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234–2252 (1996).
    [Crossref]
  13. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [Crossref] [PubMed]
  14. C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B Condens. Matter 34(8), 5621–5634 (1986).
    [Crossref] [PubMed]
  15. A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
    [Crossref]
  16. S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).
  17. K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
    [Crossref]
  18. X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
    [Crossref]
  19. R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [Crossref]

2012 (3)

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

2011 (2)

C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011).

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

2010 (2)

2009 (2)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[Crossref] [PubMed]

2004 (1)

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

2000 (1)

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

1996 (1)

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234–2252 (1996).
[Crossref]

1990 (1)

H. K. Choi and C. A. Wang, “InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[Crossref]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

1986 (1)

C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B Condens. Matter 34(8), 5621–5634 (1986).
[Crossref] [PubMed]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Aubry-Fortuna, V.

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Bessette, J. T.

Bohr, M. T.

M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in International Electron Devices Meeting (IEDM, 1995), pp. 241–244.
[Crossref]

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Cai, Y.

Camacho-Aguilera, R.

Camacho-Aguilera, R. E.

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Cecchi, S.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Chaisakul, P.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Chen, X.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Chen, Y.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Cheng, S.-L.

Choi, H. K.

H. K. Choi and C. A. Wang, “InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[Crossref]

Chrastina, D.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Chui, C. O.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

Coudevylle, J.-R.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Dollfus, P.

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Edmond, S.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Fei, E. T.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Fischetti, M. V.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234–2252 (1996).
[Crossref]

Frigerio, J.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Galdin, S.

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Gallacher, K.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Harris, J. S.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Hesto, P.

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Huo, Y.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Idoe, T.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Isella, G.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Izard, N.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Kamins, T. I.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Kimerling, L. C.

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Laux, S. E.

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234–2252 (1996).
[Crossref]

Le Roux, X.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Leed, Y.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Liu, J.

Liu, X.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Lu, J.

Mack, C. A.

C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011).

Marris-Morini, D.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Martin, R. M.

C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B Condens. Matter 34(8), 5621–5634 (1986).
[Crossref] [PubMed]

Maruizumi, T.

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Michel, J.

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Nayfeh, A.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

Nishi, Y.

Nomotob, E.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Odaa, K.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Okumurab, T.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Osten, H. J.

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Patel, N.

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Paul, D. J.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Romagnoli, M.

Sagawae, M.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Saitoa, S.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Saraswat, K.

Saraswat, K. C.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Shambat, G.

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[Crossref] [PubMed]

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Shiraki, Y.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Sugawarae, T.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Sun, X.

Suwac, Y.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Takahashia, M.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Takeda, Y.

Tania, K.

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

Usami, N.

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B Condens. Matter 34(8), 5621–5634 (1986).
[Crossref] [PubMed]

Velha, P.

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

Vivien, L.

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

Vuckovic, J.

S.-L. Cheng, J. Lu, G. Shambat, H.-Y. Yu, K. Saraswat, J. Vuckovic, and Y. Nishi, “Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate,” Opt. Express 17(12), 10019–10024 (2009).
[Crossref] [PubMed]

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Wang, C. A.

H. K. Choi and C. A. Wang, “InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[Crossref]

Xia, J.

Yonehara, T.

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

Yu, H.-Y.

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zang, K.

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti: LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (4)

K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, “1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates,” Appl. Phys. Lett. 101(21), 211101 (2012).
[Crossref]

P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, N. Izard, X. Le Roux, S. Edmond, J.-R. Coudevylle, and L. Vivien, “Room temperature direct gap electroluminescence from Ge/Si0.15Ge0.85 multiple quantum well waveguide,” Appl. Phys. Lett. 99(14), 141106 (2011).
[Crossref]

H. K. Choi and C. A. Wang, “InGaAs/AlGaAs strained single quantum well diode lasers with extremely low threshold current density and high efficiency,” Appl. Phys. Lett. 57(4), 321–323 (1990).
[Crossref]

A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, “Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: surface roughness and electrical quality,” Appl. Phys. Lett. 85(14), 2815 (2004).
[Crossref]

E. C. S. Trans. T. E. Soc. (1)

S. Saitoa, K. Odaa, K. Tania, M. Takahashia, E. Nomotob, T. Okumurab, Y. Suwac, Y. Leed, M. Sagawae, T. Sugawarae, and T. Idoe, “Si/ge quantum well light-emitting diode for monolithic integration in Si photonics chips,” E. C. S. Trans. T. E. Soc. 45(5), 103–112 (2012).

IEEE Trans. Semicond. Manuf. (1)

C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf. 24(2), 202–207 (2011).

J. Appl. Phys. (1)

M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Phys. 80(4), 2234–2252 (1996).
[Crossref]

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product,” Nat. Photonics 3(1), 59–63 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (2)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B Condens. Matter 34(8), 5621–5634 (1986).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. Galdin, P. Dollfus, V. Aubry-Fortuna, P. Hesto, and H. J. Osten, “Band offset predictions for strained group IV alloys: Si1-x-yGexCy on Si (001) and Si1-xGex on Si1-zGez (001),” Semicond. Sci. Technol. 15(6), 565–572 (2000).
[Crossref]

Other (3)

M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in International Electron Devices Meeting (IEDM, 1995), pp. 241–244.
[Crossref]

E. Fei, E. Edwards, Y. Huo, X. Chen, S. Claussen, X. Liu, Y. Rong, T. Kamins, D. Miller, and J. S. Harris, “Low power SiGe electroabsorption modulators for optical interconnects,” in Advanced Photonics Congress, OSA Technical Digest (online) (OSA, 2012), paper IM4A.3.
[Crossref]

X. Chen, Y. Huo, E. T. Fei, G. Shambat, K. Zang, X. Liu, Y. Chen, T. I. Kamins, J. Vuckovic, and J. S. Harris, “A new approach to Ge lasers with low pump power,” IEEE Photonics Conference, 60–61 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Sentaurus simulation of the band diagram and quasi-Fermi levels of a Ge quantum-well p-i-n diode under 0.76V forward bias. (b) Sentaurus simulation of carrier density in the same device.
Fig. 2
Fig. 2 Growth stack for Ge quantum-well diode.
Fig. 3
Fig. 3 Photoluminescence of Ge quantum wells and thick Ge film.
Fig. 4
Fig. 4 Temperature-dependent EL spectra for Ge quantum-well diode operating under 250 A/cm2 injection current.
Fig. 5
Fig. 5 (a) Emission wavelength as a function of temperature for Ge quantum-well diode. The red line shows the theoretical shift expected for this material. (b) Temperature dependence of EL intensity for Ge quantum-well diode. The red line shows the predicted change in EL intensity.
Fig. 6
Fig. 6 (a) Scanning electron microscopy of a Ge quantum-well microdisk. (b) Top-view optical micrograph of measurement geometry for Ge quantum-well microdisk. The micodisk is pumped vertically and the coupled fiber extracts the output light from the sides of the microdisk.
Fig. 7
Fig. 7 (a) Photoluminescence results from a Ge quantum well microdisk at varying pump powers. (b) Optical loss for the Ge quantum well microdisk calculated from Fig. 7(a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α= ln[ 1 K ( 1 1 K 2 ) ] 2πr
K= I max I min I max + I min

Metrics