Abstract

We report a tunable passively Q-switched Ho3+-doped ZBLAN fiber laser at 3 μm waveband using a Fe2+:ZnSe crystal as saturable absorber (SA) and a plane ruled grating in Littrow configuration as wavelength tuning element. Stable pulse trains with ~85 nm tuning range from 2919.1 nm to 3004.2 nm and spectrum bandwidths of ~1 nm were achieved for the Fe2+:ZnSe crystal with an initial transmission (IT) of 69%. Pulse duration increased from 1.23 μs to 2.35 μs and repetition rate decreased from 96.1 kHz to 43.56 kHz with the extension towards long wavelength direction. With the IT increasing to 79% and then 89%, though the available tuning range was slightly shortened, higher output power, pulse energy and slope efficiency were obtained with the slightly increased pulse duration and repetition rate. Maximum output power of 337 mW at a slope efficiency of 11.44% and pulse energy of 5.64 μJ were achieved at ~2970 nm and ~2991 nm, respectively. High signal noise ratio (SNR) of over 50 dB across the whole tuning range for the three ITs Fe2+:ZnSe crystals indicated the stable Q-switching. To our knowledge, this is the first reported wavelength tunable passively Q-switched ZBLAN fiber laser.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

Widely tunable passively Q-switched Er3+-doped ZrF4 fiber laser in the range of 3.4–3.7  μm based on a Fe2+:ZnSe crystal

Hongyu Luo, Jian Yang, Jianfeng Li, and Yong Liu
Photon. Res. 7(9) 1106-1111 (2019)

Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-infrared Laser Sources (Springer, 2003).
  3. S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
    [Crossref] [PubMed]
  4. R. Allen and L. Esterowitz, “CW diode pumped 2.3 µm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
    [Crossref]
  5. R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
    [Crossref]
  6. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref] [PubMed]
  7. J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
    [Crossref] [PubMed]
  8. C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fibre laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
    [Crossref]
  9. J. Schneider, C. Carbonnier, and U. B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9-μm emission wavelength,” Appl. Opt. 36(33), 8595–8600 (1997).
    [Crossref] [PubMed]
  10. S. D. Jackson, M. Pollnau, and J. F. Li, “Diode pumped erbium cascade fiber laser,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
    [Crossref]
  11. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  12. S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
    [Crossref]
  13. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref] [PubMed]
  14. J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
    [Crossref] [PubMed]
  15. J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
    [Crossref] [PubMed]
  16. T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
    [Crossref] [PubMed]
  17. J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
    [Crossref]
  18. C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
    [Crossref] [PubMed]
  19. J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
    [Crossref]
  20. C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8 µm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
    [Crossref]
  21. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  22. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
    [Crossref] [PubMed]
  23. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
    [Crossref] [PubMed]
  24. J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
    [Crossref]
  25. A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
    [Crossref]
  26. A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
    [Crossref]
  27. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [Crossref] [PubMed]
  28. Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li, and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film,” Opt. Express 22(10), 11508–11515 (2014).
    [Crossref] [PubMed]
  29. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]

2014 (3)

2013 (3)

2012 (6)

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8 µm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
[Crossref] [PubMed]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

2011 (5)

2010 (1)

2007 (1)

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

2006 (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

2004 (1)

2003 (1)

S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

1999 (1)

1998 (2)

S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[Crossref] [PubMed]

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fibre laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

1997 (2)

1989 (1)

R. Allen and L. Esterowitz, “CW diode pumped 2.3 µm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Allen, R.

R. Allen and L. Esterowitz, “CW diode pumped 2.3 µm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Andriasyan, M.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Badikov, V.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Balakrishnan, K.

Boutoussov, D.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Braun, B.

Cai, Z.

Carbonnier, C.

Dou, Z.

Esterowitz, L.

R. Allen and L. Esterowitz, “CW diode pumped 2.3 µm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Fedorov, V.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Frolov, M. P.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Gallian, A.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Guoyu, H.

Hashida, M.

He, Y.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Henderson-Sapir, O.

Hönninger, C.

Hu, T.

Huang, G.

Hudson, D. D.

Jackson, S. D.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

S. D. Jackson, M. Pollnau, and J. F. Li, “Diode pumped erbium cascade fiber laser,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[Crossref] [PubMed]

Kärtner, F. X.

Keller, U.

King, T.

Korostelin, Y. V.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Kozlovskii, V. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Landman, A. I.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Li, H.

Li, J.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

J. Li, T. Hu, and S. D. Jackson, “Q-switched induced gain switching of a two-transition cascade laser,” Opt. Express 20(12), 13123–13128 (2012).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Li, J. F.

S. D. Jackson, M. Pollnau, and J. F. Li, “Diode pumped erbium cascade fiber laser,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

Li, K.

Li, R.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Liu, J.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
[Crossref] [PubMed]

Liu, Y.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Luo, H.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Luo, Z.

Marine, P.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Martinez, A.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Mirov, S.

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Morier-Genoud, F.

Moser, M.

Munch, J.

Murakami, M.

Norwood, R. A.

Ottaway, D. J.

Paschotta, R.

Peyghambarian, N.

Podmarkov, Y. P.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Pollnau, M.

S. D. Jackson, M. Pollnau, and J. F. Li, “Diode pumped erbium cascade fiber laser,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

Polushkin, V. G.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Rozhin, A. G.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Sakabe, S.

Schneider, J.

Shimizu, S.

Shterengas, L.

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

Song, F.

Song, Y.

Tian, J.

Tobben, H.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fibre laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

Tokita, S.

Turistyn, S. K.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Unrau, U. B.

Voronov, A. A.

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Wang, F.

Wang, P.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
[Crossref] [PubMed]

Wei, C.

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8 µm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

Weng, J.

Wu, S.

Xu, H.

Xu, J.

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Xu, Y.

Yang, Q. H.

Yang, Y.

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Ye, C.

Yu, Z.

Zhang, G.

Zhang, L.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Zhang, X.

Zhou, K.

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

Zhou, M.

Zhu, G.

Zhu, X.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. D. Jackson, “Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser,” Appl. Phys. Lett. 83(7), 1316–1318 (2003).
[Crossref]

R. Allen and L. Esterowitz, “CW diode pumped 2.3 µm fiber laser,” Appl. Phys. Lett. 55(8), 721–722 (1989).
[Crossref]

Electron. Lett. (2)

R. Li, J. Li, L. Shterengas, and S. D. Jackson, “Highly efficient holmium fiber laser diode pumped at 1.94 µm,” Electron. Lett. 47(19), 1089–1090 (2011).
[Crossref]

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fibre laser at 3.22 µm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

S. D. Jackson, M. Pollnau, and J. F. Li, “Diode pumped erbium cascade fiber laser,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. Wei, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Passively Q-Switched 2.8 µm Nanosecond Fiber Laser,” IEEE Photonics Technol. Lett. 24(19), 1741–1744 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

J. Li, H. Luo, Y. He, Y. Liu, L. Zhang, K. Zhou, A. G. Rozhin, and S. K. Turistyn, “Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser,” Laser Phys. Lett. 11(6), 065102 (2014).
[Crossref]

J. Li, Y. Yang, D. D. Hudson, Y. Liu, and S. D. Jackson, “A tunable Q-switched Ho3+-doped fluoride fiber laser,” Laser Phys. Lett. 10(4), 045107 (2013).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Commun. (1)

J. Liu, J. Xu, and P. Wang, “Graphene-based passively Q-switched 2 μm thulium-doped fiber laser,” Opt. Commun. 285(24), 5319–5322 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (11)

T. Hu, D. D. Hudson, and S. D. Jackson, “Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser,” Opt. Lett. 37(11), 2145–2147 (2012).
[Crossref] [PubMed]

C. Wei, X. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, and N. Peyghambarian, “Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser,” Opt. Lett. 38(17), 3233–3236 (2013).
[Crossref] [PubMed]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
[Crossref] [PubMed]

J. Li, T. Hu, and S. D. Jackson, “Dual wavelength Q-switched cascade laser,” Opt. Lett. 37(12), 2208–2210 (2012).
[Crossref] [PubMed]

S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998).
[Crossref] [PubMed]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
[Crossref] [PubMed]

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Proc. SPIE (1)

A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, and M. Andriasyan, “Fe:ZnSe passive Q-switching of 2.8-μm Er:Cr:YSGG laser Cavity,” Proc. SPIE 6451(64510L), 64510L (2007).
[Crossref]

Quantum Electron. (1)

A. A. Voronov, V. I. Kozlovskii, Y. V. Korostelin, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and M. P. Frolov, “Passive Fe2+:ZnSe single-crystal Q switch for 3-μm lasers,” Quantum Electron. 36(1), 1–2 (2006).
[Crossref]

Other (1)

I. T. Sorokina and K. L. Vodopyanov, Solid-state Mid-infrared Laser Sources (Springer, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of tunable passively Q-switched Ho3+-doped ZBLAN fiber laser based on Fe2+:ZnSe crystal SA. Inset: Photograph of Fe2+:ZnSe crystal sample.
Fig. 2
Fig. 2 (a) Temporal domain pulse train at the launched pump power of 3.32 W using 69% IT Fe2+:ZnSe crystal SA. Inset: single pulse profile at a 26 µs scanning range and RF spectrum at a scanning range of 45 kHz. (b) Measured output power, repetition rate, pulse duration and calculated pulse energy and peak power as a function of the launched pump power.
Fig. 3
Fig. 3 (a) Measured output spectrum as tuning the 5I65I7 transition at the maximum launched pump power of 3.32 W. (b) Measured output power once the grating beyond tuning edge.
Fig. 4
Fig. 4 (a) Repetition rates and pulse durations, (b) output powers and pulse energies and (c) slope efficiencies as a function of tuning wavelength when employing 69%, 79%, 89% IT Fe2+:ZnSe crystals as the SA, respectively at the maximum launched pump power of 3.32 W.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ p = 1.76 2 T R Δ R ,
E p 2 > E s a t , g E s a t , a Δ R = F s a t , g A g F s a t , a A a Δ R = E p , t ,

Metrics