Abstract

Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-Color Fluorescence Cross-Correlation Spectroscopy on a Single Plane Illumination Microscope (SPIM-FCCS)

Jan Wolfgang Krieger, Anand Pratap Singh, Christoph S. Garbe, Thorsten Wohland, and Jörg Langowski
Opt. Express 22(3) 2358-2375 (2014)

Active focus stabilization for upright selective plane illumination microscopy

Per Niklas Hedde and Enrico Gratton
Opt. Express 23(11) 14707-14714 (2015)

Time-resolved fluorescence anisotropy imaging applied to live cells

Klaus Suhling, Jan Siegel, Peter M. P. Lanigan, Sandrine Lévêque-Fort, Stephen E. D. Webb, David Phillips, Daniel M. Davis, and Paul M. W. French
Opt. Lett. 29(6) 584-586 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110(5), 2685–2708 (2010).
    [Crossref] [PubMed]
  2. P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223(5208), 831 (1969).
    [Crossref] [PubMed]
  3. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  4. C. E. Bigelow, D. L. Conover, and T. H. Foster, “Confocal fluorescence spectroscopy and anisotropy imaging system,” Opt. Lett. 28(9), 695–697 (2003).
    [Crossref] [PubMed]
  5. M. Koskinen and P. Hotulainen, “Measuring F-actin properties in dendritic spines,” Front. Neuroanat. 8(74), 74 (2014).
    [PubMed]
  6. D. Axelrod, “Total internal reflection fluorescence microscopy,” Methods Cell Biol. 30, 245–270 (1989).
    [Crossref] [PubMed]
  7. M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. I. Theory,” Biophys. J. 68(6), 2566–2572 (1995).
    [Crossref] [PubMed]
  8. M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. II. Measurements on porphyrin and cytochrome c,” Biophys. J. 68(6), 2573–2579 (1995).
    [Crossref] [PubMed]
  9. T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
    [Crossref] [PubMed]
  10. H. Siedentopf and R. Zsigmondy, “Ueber Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).
  11. A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
    [Crossref] [PubMed]
  12. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  13. U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
    [Crossref] [PubMed]
  14. P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
    [Crossref] [PubMed]
  15. J. J. Fisz, “Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy,” J. Phys. Chem. A 111(50), 12867–12870 (2007).
    [Crossref] [PubMed]
  16. J. J. Fisz, “Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy,” J. Phys. Chem. A 111(35), 8606–8621 (2007).
    [Crossref] [PubMed]
  17. V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
    [Crossref] [PubMed]
  18. V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
    [Crossref] [PubMed]
  19. A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
    [Crossref] [PubMed]
  20. P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
    [Crossref] [PubMed]
  21. E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
    [Crossref] [PubMed]
  22. I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
    [Crossref] [PubMed]
  23. H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
    [Crossref] [PubMed]
  24. N. O. Deakin and C. E. Turner, “Paxillin comes of age,” J. Cell Sci. 121(Pt 15), 2435–2444 (2008).
    [Crossref] [PubMed]
  25. M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
    [Crossref] [PubMed]
  26. M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
    [Crossref] [PubMed]
  27. M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

M. Koskinen and P. Hotulainen, “Measuring F-actin properties in dendritic spines,” Front. Neuroanat. 8(74), 74 (2014).
[PubMed]

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
[Crossref] [PubMed]

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

2012 (3)

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
[Crossref] [PubMed]

2011 (1)

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

2010 (1)

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110(5), 2685–2708 (2010).
[Crossref] [PubMed]

2009 (1)

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

2008 (2)

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

N. O. Deakin and C. E. Turner, “Paxillin comes of age,” J. Cell Sci. 121(Pt 15), 2435–2444 (2008).
[Crossref] [PubMed]

2007 (3)

J. J. Fisz, “Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy,” J. Phys. Chem. A 111(50), 12867–12870 (2007).
[Crossref] [PubMed]

J. J. Fisz, “Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy,” J. Phys. Chem. A 111(35), 8606–8621 (2007).
[Crossref] [PubMed]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (2)

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

1995 (2)

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. I. Theory,” Biophys. J. 68(6), 2566–2572 (1995).
[Crossref] [PubMed]

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. II. Measurements on porphyrin and cytochrome c,” Biophys. J. 68(6), 2573–2579 (1995).
[Crossref] [PubMed]

1993 (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1989 (1)

D. Axelrod, “Total internal reflection fluorescence microscopy,” Methods Cell Biol. 30, 245–270 (1989).
[Crossref] [PubMed]

1969 (1)

P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223(5208), 831 (1969).
[Crossref] [PubMed]

1903 (1)

H. Siedentopf and R. Zsigmondy, “Ueber Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Ajtai, K.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Aluko, J.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Ameer-Beg, S. M.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Amodaj, N.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Atkinson, C. E.

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy,” Methods Cell Biol. 30, 245–270 (1989).
[Crossref] [PubMed]

Bigelow, C. E.

Bos, M. A.

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. II. Measurements on porphyrin and cytochrome c,” Biophys. J. 68(6), 2573–2579 (1995).
[Crossref] [PubMed]

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. I. Theory,” Biophys. J. 68(6), 2566–2572 (1995).
[Crossref] [PubMed]

Burghardt, T. P.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Burns, D. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
[Crossref] [PubMed]

Chan, D. K.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Coban, O.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Conover, D. L.

Coppey, J.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Coppey-Moisan, M.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Cossec, J.-C.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Dalal, R.

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

Davidovits, P.

P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223(5208), 831 (1969).
[Crossref] [PubMed]

Deakin, N. O.

N. O. Deakin and C. E. Turner, “Paxillin comes of age,” J. Cell Sci. 121(Pt 15), 2435–2444 (2008).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Devauges, V.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Digman, M. A.

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

Durieux, C.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Edelstein, A. D.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Egger, M. D.

P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223(5208), 831 (1969).
[Crossref] [PubMed]

Fisz, J. J.

J. J. Fisz, “Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy,” J. Phys. Chem. A 111(50), 12867–12870 (2007).
[Crossref] [PubMed]

J. J. Fisz, “Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy,” J. Phys. Chem. A 111(35), 8606–8621 (2007).
[Crossref] [PubMed]

Fort, E.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Foster, T. H.

Gautier, I.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Goldstein, L. S.

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

Gratton, E.

P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
[Crossref] [PubMed]

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
[Crossref] [PubMed]

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

Gunther, S.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Halstead, M. F.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Hedde, P. N.

P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
[Crossref] [PubMed]

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
[Crossref] [PubMed]

Horwitz, A. F.

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

Horwitz, A. R.

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

Hotulainen, P.

M. Koskinen and P. Hotulainen, “Measuring F-actin properties in dendritic spines,” Front. Neuroanat. 8(74), 74 (2014).
[PubMed]

Hufnagel, L.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Jameson, D. M.

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110(5), 2685–2708 (2010).
[Crossref] [PubMed]

Kampmann, M.

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

Kandel, E. R.

H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
[Crossref] [PubMed]

Kemnitz, K.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Kleijn, J. M.

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. II. Measurements on porphyrin and cytochrome c,” Biophys. J. 68(6), 2573–2579 (1995).
[Crossref] [PubMed]

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. I. Theory,” Biophys. J. 68(6), 2566–2572 (1995).
[Crossref] [PubMed]

Koskinen, M.

M. Koskinen and P. Hotulainen, “Measuring F-actin properties in dendritic spines,” Front. Neuroanat. 8(74), 74 (2014).
[PubMed]

Krzic, U.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Lécart, S.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Lévêque-Fort, S.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Levitt, J. A.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Li, J.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Marquer, C.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Matthews, D. R.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Mattheyses, A. L.

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

Moerner, W. E.

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

Monypenny, J.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Nedbal, J.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Ng, T.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Nicolas, J.-C.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Pansu, R. B.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Peterman, E. J.

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

Pinkard, H.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Poland, S. P.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Potier, M.-C.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Ross, J. A.

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110(5), 2685–2708 (2010).
[Crossref] [PubMed]

Saunders, T. E.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Siedentopf, H.

H. Siedentopf and R. Zsigmondy, “Ueber Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Simon, S. M.

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

Sosa, H.

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

Spelman, F. A.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
[Crossref] [PubMed]

Stakic, M.

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
[Crossref] [PubMed]

Stelzer, E. H. K.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Streichan, S. J.

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stuurman, N.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Suhling, K.

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Tramier, M.

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

Trifilieff, P.

H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
[Crossref] [PubMed]

Tsuchida, M. A.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Turner, C. E.

N. O. Deakin and C. E. Turner, “Paxillin comes of age,” J. Cell Sci. 121(Pt 15), 2435–2444 (2008).
[Crossref] [PubMed]

Vale, R. D.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

Vishwasrao, H. D.

H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
[Crossref] [PubMed]

Voie, A. H.

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weitsman, G.

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

Wiseman, P. W.

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Zheng, Y.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

Zsigmondy, R.

H. Siedentopf and R. Zsigmondy, “Ueber Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Ann. Phys. (1)

H. Siedentopf and R. Zsigmondy, “Ueber Sichtbarmachung und Groessenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubinglaeser,” Ann. Phys. 10, 1–39 (1903).

Biophys. J. (8)

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. I. Theory,” Biophys. J. 68(6), 2566–2572 (1995).
[Crossref] [PubMed]

M. A. Bos and J. M. Kleijn, “Determination of the orientation distribution of adsorbed fluorophores using TIRF. II. Measurements on porphyrin and cytochrome c,” Biophys. J. 68(6), 2573–2579 (1995).
[Crossref] [PubMed]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93(6), 2226–2239 (2007).
[Crossref] [PubMed]

E. J. Peterman, H. Sosa, L. S. Goldstein, and W. E. Moerner, “Polarized fluorescence microscopy of individual and many kinesin motors bound to axonemal microtubules,” Biophys. J. 81(5), 2851–2863 (2001).
[Crossref] [PubMed]

I. Gautier, M. Tramier, C. Durieux, J. Coppey, R. B. Pansu, J.-C. Nicolas, K. Kemnitz, and M. Coppey-Moisan, “Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins,” Biophys. J. 80(6), 3000–3008 (2001).
[Crossref] [PubMed]

H. D. Vishwasrao, P. Trifilieff, and E. R. Kandel, “In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy,” Biophys. J. 102(5), 1204–1214 (2012).
[Crossref] [PubMed]

M. A. Digman, P. W. Wiseman, A. R. Horwitz, and E. Gratton, “Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method,” Biophys. J. 96(2), 707–716 (2009).
[Crossref] [PubMed]

M. A. Digman, R. Dalal, A. F. Horwitz, and E. Gratton, “Mapping the number of molecules and brightness in the laser scanning microscope,” Biophys. J. 94(6), 2320–2332 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

D. M. Jameson and J. A. Ross, “Fluorescence polarization/anisotropy in diagnostics and imaging,” Chem. Rev. 110(5), 2685–2708 (2010).
[Crossref] [PubMed]

Front. Neuroanat. (1)

M. Koskinen and P. Hotulainen, “Measuring F-actin properties in dendritic spines,” Front. Neuroanat. 8(74), 74 (2014).
[PubMed]

J. Biol. Methods (1)

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), e10 (2014).
[Crossref] [PubMed]

J. Cell Sci. (1)

N. O. Deakin and C. E. Turner, “Paxillin comes of age,” J. Cell Sci. 121(Pt 15), 2435–2444 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

A. H. Voie, D. H. Burns, and F. A. Spelman, “Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens,” J. Microsc. 170(3), 229–236 (1993).
[Crossref] [PubMed]

J. Phys. Chem. A (2)

J. J. Fisz, “Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy,” J. Phys. Chem. A 111(50), 12867–12870 (2007).
[Crossref] [PubMed]

J. J. Fisz, “Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy,” J. Phys. Chem. A 111(35), 8606–8621 (2007).
[Crossref] [PubMed]

Methods Cell Biol. (1)

D. Axelrod, “Total internal reflection fluorescence microscopy,” Methods Cell Biol. 30, 245–270 (1989).
[Crossref] [PubMed]

Nat. Methods (1)

U. Krzic, S. Gunther, T. E. Saunders, S. J. Streichan, and L. Hufnagel, “Multiview light-sheet microscope for rapid in toto imaging,” Nat. Methods 9(7), 730–733 (2012).
[Crossref] [PubMed]

Nat. Struct. Mol. Biol. (1)

M. Kampmann, C. E. Atkinson, A. L. Mattheyses, and S. M. Simon, “Mapping the orientation of nuclear pore proteins in living cells with polarized fluorescence microscopy,” Nat. Struct. Mol. Biol. 18(6), 643–649 (2011).
[Crossref] [PubMed]

Nature (1)

P. Davidovits and M. D. Egger, “Scanning laser microscope,” Nature 223(5208), 831 (1969).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PLoS One (2)

V. Devauges, D. R. Matthews, J. Aluko, J. Nedbal, J. A. Levitt, S. P. Poland, O. Coban, G. Weitsman, J. Monypenny, T. Ng, and S. M. Ameer-Beg, “Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane,” PLoS One 9(10), e110695 (2014).
[Crossref] [PubMed]

V. Devauges, C. Marquer, S. Lécart, J.-C. Cossec, M.-C. Potier, E. Fort, K. Suhling, and S. Lévêque-Fort, “Homodimerization of amyloid precursor protein at the plasma membrane: A homoFRET study by time-resolved fluorescence anisotropy imaging,” PLoS One 7(9), e44434 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(2), 7048 (2014).
[Crossref] [PubMed]

Science (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (1460 KB)      Vosualization1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the SPIM setup used for fluorescence anisotropy imaging, see main text for a description.

Fig. 2
Fig. 2

Three-dimensional projection of the fluorescence intensity (a) and anisotropy image (b) at the interface between a PMMA film covered with immersion water containing similar concentrations of Rhodamine 110. Fluorescence intensity and anisotropy histograms are shown to the side.

Fig. 3
Fig. 3

Fluorescence anisotropy measurements of Rhodamine 110 in solutions of different water/glycerol content (blue symbols) and varying temperature (red symbols) with a spectrofluorimeter (open symbols) and our SPIM setup (closed symbols).

Fig. 4
Fig. 4

Measurements of EGFP expressing CHO-K1 cells (a-c), EGFP-EGFP expressing HeLa cells (d-f), actin-EGFP expressing HeLa cells (g-i), and EGFP-paxillin expressing CHO-K1 cells (j-l). 3D intensity projections of the anisotropy images are shown in the left column. The corresponding 3D intensity projections are displayed in the center column. The right column contains plots of the average anisotropy in each plane of the z stack, the error bars correspond to the pixel standard deviation. Anisotropy images of exemplary planes are shown as insets.

Fig. 5
Fig. 5

Three-dimensional time lapse anisotropy images of EGFP-paxillin expressing CHO-K1 cells (see Visualization 1). As the cells shown in the 3D intensity projections travel along the surface, membrane protrusions are formed (arrows). At these sites, EGFP-paxillin is compacted forming new adhesions as indicated by the low anisotropy.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r= I VV G I VH I VV +2G I VH ,
G= I HV I HH .
r= I VV G I VH I VV + x NA G I VH .
x NA = I VV SPIM G SPIM I VH SPIM I VV SPIM r FLUO G SPIM I VH SPIM r FLUO .

Metrics