Abstract

A silicon light emitter in telecom-band based on a single germanium quantum dot precisely embedded in a silicon photonic crystal nanocavity is fabricated by a scalable method. A sharp resonant luminescence peak is observed at 1498.8 nm, which is enhanced by more than three orders of magnitude. The Purcell factor for the fundamental resonant mode is estimated from enhancement factor and increased collection efficiency. The cavity modes coupled to the ground state and excited state emission of germanium quantum dot are identified in the luminescence spectrum. Our devices provide a CMOS-compatible way of developing silicon-based low-power consuming light emitters, and are promising for realizing on-chip single photon sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon-based current-injected light emitting diodes with Ge self-assembled quantum dots embedded in photonic crystal nanocavities

Xuejun Xu, Toshiki Tsuboi, Taichi Chiba, Noritaka Usami, Takuya Maruizumi, and Yasuhiro Shiraki
Opt. Express 20(13) 14714-14721 (2012)

Enhanced light emission from Ge quantum dots in photonic crystal ring resonator

Yong Zhang, Cheng Zeng, Danping Li, Xiangjie Zhao, Ge Gao, Jinzhong Yu, and Jinsong Xia
Opt. Express 22(10) 12248-12254 (2014)

Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs

R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler
Opt. Express 22(21) 25426-25435 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
    [Crossref] [PubMed]
  3. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [Crossref]
  4. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
    [Crossref]
  5. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
    [Crossref] [PubMed]
  6. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [Crossref]
  7. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
    [Crossref] [PubMed]
  8. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
    [Crossref]
  9. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [Crossref] [PubMed]
  10. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref] [PubMed]
  12. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  13. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
    [Crossref] [PubMed]
  14. J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84(5), 052326 (2011).
    [Crossref]
  15. G.-H. Duan, S. Olivier, S. Malhouitre, A. Accard, P. Kaspar, G. de Valicourt, G. Levaufre, N. Girard, A. Le Liepvre, A. Shen, D. Make, F. Lelarge, C. Jany, K. Ribaud, F. Mallecot, P. Charbonnier, H. Gariah, C. Kopp, and J.-L. Gentner, “New Advances on Heterogeneous Integration of III–V on Silicon,” J. Lightwave Technol. 33(5), 976–983 (2015).
    [Crossref]
  16. J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
    [Crossref]
  17. J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
    [Crossref] [PubMed]
  18. X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
    [Crossref]
  19. Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
    [Crossref] [PubMed]
  20. R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, “Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs,” Opt. Express 22(21), 25426–25435 (2014).
    [Crossref] [PubMed]
  21. Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
    [Crossref]
  22. F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
    [Crossref] [PubMed]
  23. Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
    [Crossref] [PubMed]
  24. Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
    [Crossref]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  26. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
    [Crossref] [PubMed]
  27. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
    [Crossref]
  28. M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17(17), 14618–14626 (2009).
    [Crossref] [PubMed]
  29. J.-M. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots (Springer, 2003), pp. 269–314.
  30. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
    [Crossref] [PubMed]
  31. P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
    [Crossref]
  32. J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
    [Crossref]
  33. M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
    [Crossref]
  34. B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
    [Crossref]
  35. T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
    [Crossref]
  36. M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
    [Crossref]

2015 (1)

2014 (4)

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, “Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs,” Opt. Express 22(21), 25426–25435 (2014).
[Crossref] [PubMed]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

2013 (1)

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

2012 (3)

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

2011 (3)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84(5), 052326 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

2010 (6)

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[Crossref] [PubMed]

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[Crossref] [PubMed]

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

2009 (3)

T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
[Crossref]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17(17), 14618–14626 (2009).
[Crossref] [PubMed]

2008 (1)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

2007 (4)

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

2006 (3)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

2005 (1)

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

2001 (3)

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Accard, A.

Adnane, B.

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

Akahane, Y.

Andreani, L. C.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[Crossref] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Asano, T.

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Bauer, G.

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Bensahel, D.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Birner, S.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Birowosuto, M. D.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Boucaud, P.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Bouchier, D.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Brehm, M.

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Brunhes, T.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Buckley, S.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Campidelli, Y.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Charbonnier, P.

Chiba, T.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
[Crossref]

Dais, C.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Dashiell, M.

M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
[Crossref]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
[Crossref]

de Valicourt, G.

Denker, U.

M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
[Crossref]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Duan, G.-H.

Dwir, B.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Ekinci, Y.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Elfving, A.

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

Elkurdi, M.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Englund, D.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84(5), 052326 (2011).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17(17), 14618–14626 (2009).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Faist, J.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Fan, Y.

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Faraon, A.

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17(17), 14618–14626 (2009).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Felici, M.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Fromherz, T.

R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, “Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs,” Opt. Express 22(21), 25426–25435 (2014).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Fukatsu, S.

T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
[Crossref]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Galli, M.

Gallo, P.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Gao, G.

Gariah, H.

Gentner, J.-L.

Gerace, D.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18(15), 16064–16073 (2010).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Girard, N.

Glaser, M.

Groiss, H.

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Grützmacher, D.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Grydlik, M.

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Hackl, F.

R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, “Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs,” Opt. Express 22(21), 25426–25435 (2014).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hansson, G.

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

Hansson, G. V.

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Hingerl, K.

Holtz, P.-O.

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

Holý, V.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Huang, S.

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Huang, Z.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Ikegami, Y.

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Jannesari, R.

Jany, C.

Jiang, Z.

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Jin, G.

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Kanemitsu, Y.

T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
[Crossref]

Kapon, E.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Karlsson, K.

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

Kaspar, P.

Kermarrec, O.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Kopp, C.

Krauss, T. F.

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Larsson, M.

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

Le Liepvre, A.

Lechner, R. T.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Lelarge, F.

Levaufre, G.

Li, D.

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Li, J.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Li, K.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Liu, J.

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Lukin, M. D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Luo, Y.

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Ma, Y.

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Make, D.

Malhouitre, S.

Mallecot, F.

Maruizumi, T.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[Crossref] [PubMed]

Matsuo, S.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Mercier, E.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Mohan, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Mower, J.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84(5), 052326 (2011).
[Crossref]

Müller, E.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Nakata, Y.

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Narusawa, S.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

Ni, W.-X.

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

Noda, S.

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Notomi, M.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Nötzel, R.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

O’Faolain, L.

Olivier, S.

Ota, Y.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Portalupi, S. L.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Reardon, C.

Ribaud, K.

Rivoire, K.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Rudra, A.

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Sauvage, S.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Schäffler, F.

R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, “Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs,” Opt. Express 22(21), 25426–25435 (2014).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Schatzl, M.

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Schmidt, O.

M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
[Crossref]

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Shen, A.

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Shiraki, Y.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[Crossref] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Sigg, H.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Solak, H. H.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Song, B. S.

Stangl, J.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Sumikura, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Takeda, Y.

Taniyama, H.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Tayagaki, T.

T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
[Crossref]

Thanh, V. L.

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

Toishi, M.

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
[Crossref]

Tsuboi, T.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

Usami, N.

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[Crossref] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

van Veldhoven, P. J.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Vuckovic, J.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

M. Toishi, D. Englund, A. Faraon, and J. Vucković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity,” Opt. Express 17(17), 14618–14626 (2009).
[Crossref] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

Wan, J.

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Wang, K. L.

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Wintersberger, E.

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

Xia, J.

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

J. Xia, Y. Takeda, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-temperature electroluminescence from Si microdisks with Ge quantum dots,” Opt. Express 18(13), 13945–13950 (2010).
[Crossref] [PubMed]

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Xu, X.

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

Yang, X.

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Yu, J.

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Zeng, C.

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, C. Zeng, D. Li, X. Zhao, G. Gao, J. Yu, and J. Xia, “Enhanced light emission from Ge quantum dots in photonic crystal ring resonator,” Opt. Express 22(10), 12248–12254 (2014).
[Crossref] [PubMed]

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

Zhao, X.

Zhong, Z.

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Zhou, T.

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

J. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

J. Wan, G. Jin, Z. Jiang, Y. Luo, J. Liu, and K. L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001),” Appl. Phys. Lett. 78(12), 1763–1765 (2001).
[Crossref]

B. Adnane, K. Karlsson, G. Hansson, P.-O. Holtz, and W.-X. Ni, “Spatially direct and indirect transitions of self-assembled GeSi/Si quantum dots studied by photoluminescence excitation spectroscopy,” Appl. Phys. Lett. 96(18), 181107 (2010).
[Crossref]

M. Dashiell, U. Denker, and O. Schmidt, “Photoluminescence investigation of phononless radiative recombination and thermal-stability of germanium hut clusters on silicon (001),” Appl. Phys. Lett. 79(14), 2261–2263 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Xu, S. Narusawa, T. Chiba, T. Tsuboi, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1830–1838 (2012).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, C. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, “Enhanced 1524-nm Emission From Ge Quantum Dots in a Modified Photonic Crystal L3 Cavity,” IEEE Photonics J. 5(5), 4500607 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

Y. Ma, C. Zeng, T. Zhou, S. Huang, Y. Fan, Z. Zhong, X. Yang, J. Xia, and Z. Jiang, “Ordering of low-density Ge quantum dot on patterned Si substrate,” J. Phys. D Appl. Phys. 47(48), 485303 (2014).
[Crossref]

Nano Lett. (2)

D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, “Three-dimensional Si/Ge quantum dot crystals,” Nano Lett. 7(10), 3150–3156 (2007).
[Crossref] [PubMed]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10(10), 3922–3926 (2010).
[Crossref] [PubMed]

Nanoscale (1)

Y. Ma, S. Huang, C. Zeng, T. Zhou, Z. Zhong, T. Zhou, Y. Fan, X. Yang, J. Xia, and Z. Jiang, “Towards controllable growth of self-assembled SiGe single and double quantum dot nanostructures,” Nanoscale 6(8), 3941–3948 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[Crossref]

A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4(5), 302–306 (2010).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Nat. Phys. (2)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Phys. 6(4), 279–283 (2010).
[Crossref]

Nature (3)

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (1)

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84(5), 052326 (2011).
[Crossref]

Phys. Rev. B (4)

P. Boucaud, S. Sauvage, M. Elkurdi, E. Mercier, T. Brunhes, V. L. Thanh, D. Bouchier, O. Kermarrec, Y. Campidelli, and D. Bensahel, “Optical recombination from excited states in Ge/Si self-assembled quantum dots,” Phys. Rev. B 64(15), 155310 (2001).
[Crossref]

T. Tayagaki, S. Fukatsu, and Y. Kanemitsu, “Photoluminescence dynamics and reduced Auger recombination in Si 1− x Ge x/Si superlattices under high-density photoexcitation,” Phys. Rev. B 79(4), 041301 (2009).
[Crossref]

M. Larsson, A. Elfving, W.-X. Ni, G. V. Hansson, and P.-O. Holtz, “Growth-temperature-dependent band alignment in Si/ Ge quantum dots from photoluminescence spectroscopy,” Phys. Rev. B 73(19), 195319 (2006).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79(4), 041101 (2009).
[Crossref]

Phys. Rev. Lett. (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci. Rep. 2, 321 (2012).
[Crossref] [PubMed]

Other (1)

J.-M. Gerard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” in Single Quantum Dots (Springer, 2003), pp. 269–314.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Process flow for the fabrication of PhC cavitiy with commensurably embedded Ge SQD. (a-d) Schematic structures of the sample during the fabrication process are shown. The inset of (a) shows the optical microscope image of alignment marker on SOI substrate. The inset of (b-c) shows the AFM image of a nanohole and a Ge SQD. The inset of (d) shows a SEM image of two PhC cavities along with four alignment markers. (e) The schematic structure of the device. The red dot represents Ge SQD in the top Si/Ge layer.

Fig. 2
Fig. 2

(a) Atomic force microscope (AFM) micrograph of the Ge SQDs grown on the nanohole patterns with a period of 2 μm. The dotted PhC cavity pattern schematically shows the relative position between cavity center and SQD. (b) The scanning electron microscope (SEM) image of fabricated PhC L3 cavity with embedded Ge SQD. The three holes adjacent to the cavity are laterally shifted by 0.2 a, 0.025 a, 0.2 a, respectively, shown with orange arrows. Radius of the holes around the cavity, which are labeled by the red ovals, is enlarged by a quantity of Δr = + 0.03a to optimize the far fields of the cavity modes for stronger vertical radiation. (c) The simulated electric field intensity profile (|E|2) at the plane of z = 0 (the center of the membrane) for the fundamental mode of the L3 cavity. (d) The simulated far-field pattern (electric filed intensity profile, |E|2) for the fundamental mode of the L3 cavity. White concentric circles correspond to θ = 30°, 45°, 60°, 90° from the inner one to the outer one, respectively. (e) The statistical distribution of alignment error between SQD and the cavity center. The x axis represents alignment error between SQDs and the target position, and the y axis shows the number of devices within a certain misalignment range. (f) The μ-PL spectrum for the unprocessed Ge SQD measured at 7 K with an excitation power of 460 μW at λ = 532 nm. The QD and wetting layer (WL) related emission is indicated in the figure. Si related peaks are observed at approximately 1088 nm (TA phonon), 1127 nm (TO phonon), and 1195 nm (TO + Γ phonon).

Fig. 3
Fig. 3

(a) PL spectra of Ge SQD in a unprocessed membrane and a L3 nanocavity measured at T = 7 K with an excitation power of 460 μW. (b) and (c) show the magnified graph of the PL spectra for the emission peak labeled as “M0” and “M3” in (a), respectively.

Fig. 4
Fig. 4

(a) Normalized Purcell factor as a function of QD position on the z = 0 plane for the M0 mode. (b) Normalized Purcell factor along the white dot lines in (a) for both x & y directions.

Fig. 5
Fig. 5

(a) The PL enhancement factor of M0 mode from L3 cavities with different lattice constants (a = 378~420 nm). (b) The PL enhancement factor of M3 mode from a series of L3 cavities.

Fig. 6
Fig. 6

(a-b) show measured PL peaks of M0 and M3 modes at different temperatures. Strong resonant luminescence peaks are observed up to room temperature. The excitation power is 460 μW. (c) The integrated PL intensity of M0 & M3 modes as the function of TPL. The solid lines are the fits of experimental data. (d) The schematic picture of the type-II energy band lineup in the Si/Ge QD system along

Fig. 7
Fig. 7

(a) The power dependence of integrated PL intensity of M0 and M3 modes at 30 K. The solid lines are the fits of experimental data. (b) The power dependence of linewidth for M0 mode at 30 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F p = γ η cavity / η membrane
F p = 3 Q eff ( λ c /n ) 3 4 π 2 V | d · f ( r e ) d | Δ ω c 2 4 ( ω e ω c ) 2 +Δ ω c 2

Metrics