Abstract

We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmon-enhanced magneto-optical activity in a nanostructure with circle annular arrays

Daoyong Li, Leyi Chen, Chengxin Lei, Jose L. Menendez, Celia Mallada, Zhixiong Tang, Shaolong Tang, and Youwei Du
J. Opt. Soc. Am. B 33(5) 922-927 (2016)

Waveguide plasmon resonance induced enhancement of the magneto-optics in a Ag/Bi:YIG bilayer structure

Daoyong Li, Chengxin Lei, Leyi Chen, Zhixiong Tang, Shaoyin Zhang, Shaolong Tang, and Youwei Du
J. Opt. Soc. Am. B 32(9) 2003-2008 (2015)

Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices [Invited]

Ilya A. Akimov, Vladimir I. Belotelov, Alexey V. Scherbakov, Martin Pohl, Andrey N. Kalish, Alexey S. Salasyuk, Michael Bombeck, Christian Brüggemann, Andrey V. Akimov, Roslan I. Dzhioev, Vladimir L. Korenev, Yuri G. Kusrayev, Victor F. Sapega, Vyacheslav A. Kotov, Dmitri R. Yakovlev, Anatoly K. Zvezdin, and Manfred Bayer
J. Opt. Soc. Am. B 29(2) A103-A118 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  3. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
    [Crossref]
  4. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
    [Crossref]
  5. V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [Crossref] [PubMed]
  6. J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
    [Crossref]
  7. J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
    [PubMed]
  8. V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
    [Crossref]
  9. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
    [Crossref] [PubMed]
  10. A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
    [Crossref]
  11. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
    [Crossref]
  12. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).
  13. M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
    [Crossref]
  14. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
    [Crossref]
  15. E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
    [Crossref]
  16. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
    [Crossref]
  17. J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
    [Crossref]
  18. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
    [Crossref] [PubMed]
  19. E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
    [Crossref]
  20. H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
    [Crossref]
  21. V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300(1), e260–e263 (2006).
    [Crossref]
  22. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007).
    [Crossref] [PubMed]
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  24. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [Crossref]
  25. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express 18, 7743–7752 (2010).
    [Crossref] [PubMed]
  26. D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
    [Crossref] [PubMed]
  27. J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
    [Crossref]
  28. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
    [Crossref]
  29. A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
    [Crossref]
  30. D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [Crossref]
  31. B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
    [Crossref]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  33. E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
    [Crossref]
  34. A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
    [Crossref]
  35. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

2015 (2)

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

2013 (4)

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

2012 (3)

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
[Crossref]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

2011 (4)

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

2010 (6)

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic field modulation of intense surface plasmon polaritons,” Opt. Express 18, 7743–7752 (2010).
[Crossref] [PubMed]

2009 (3)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

2007 (2)

V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612–6622 (2007).
[Crossref] [PubMed]

2006 (2)

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300(1), e260–e263 (2006).
[Crossref]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

2004 (1)

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

2001 (1)

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

1999 (1)

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Akimov, I. A.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Akinoglu, E. M.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

Alameh, K.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Altube, A.

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

Anguita, J.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Armelles, G.

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

Arnalds, U. B.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

Banthí, J. C.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Baryshev, A. V.

Bayer, M.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Belotelov, V.

V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Belotelov, V. I.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300(1), e260–e263 (2006).
[Crossref]

Bezus, E.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Blanco, A.

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Caballero, B.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Clavero, C.

Ctistis, G.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Cuevas, J. C.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
[Crossref]

Culshaw, I.

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Degiron, A.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

Diwekar, M.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

Doskolovich, L.

V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Dregely, D.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Ebbesen, T.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Fang, H.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

Fedyanin, A. A.

Fermento, R.

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

Ferreiro-Vila, E.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Fumagalli, P.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Galisteo-López, J. F.

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

García, F.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

García-Martín, A.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
[Crossref]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

García-Martín, J.

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

García-Martín, J. M.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

García-Vidal, F. J.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Genet, C.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Giersig, M.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Giessen, H.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

González, M.

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

González-Díaz, J.

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

González-Díaz, J. B.

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Granovsky, A. B.

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Hjorvarsson, B.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

Hjörvarsson, B.

Inoue, M.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kamaev, V.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

Kapaklis, V.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Keller, J.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

Khanikaev, A. B.

Kim, T.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Kochergin, V. E.

V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
[Crossref]

Kotov, V.

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[Crossref]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Kreilkamp, L. E.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

Krishnan, A.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Kuzmichev, A. N.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Laluet, J.-Y.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

Lezec, H.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

López, C.

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

López-García, M.

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

Lukaszew, R. A.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martín-Moreno, L.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Melander, E.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

Meneses-Rodríguez, D.

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

Neutzner, S.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

Nur-E-Alam, M.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Östman, E.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Papaioannou, E. T.

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

Pappas, S. D.

Patoka, P.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. García-Martín, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19, 23867–23877 (2011).
[Crossref] [PubMed]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Pendry, J.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Prieto, P.

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Przybilla, F.

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Sandoval, E.

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

Schmidt, J.

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Sepúlveda, B.

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

Shi, J.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

Skuza, J. R.

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

Thio, T.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Toporov, A. Yu.

V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
[Crossref]

Torrado, J. F.

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

Valeiko, M. V.

V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
[Crossref]

Vardeny, Z. V.

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

Vasiliev, M.

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Wehlus, T.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Whittaker, D.

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Wolff, P.

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Yang, K.

Zvezdin, A.

V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[Crossref]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300(1), e260–e263 (2006).
[Crossref]

Adv. Mater. (1)

J. C. Banthí, D. Meneses-Rodríguez, F. García, M. U. González, A. García-Martín, A. Cebollada, and G. Armelles, “High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO(2) magnetoplasmonic nanodisks,” Adv. Mater. 24, OP36–OP41 (2012).
[PubMed]

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10 (2013).
[Crossref]

Appl. Phys. Lett. (5)

J. B. González-Díaz, B. Sepúlveda, A. García-Martín, and G. Armelles, “Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks,” Appl. Phys. Lett. 97, 043114 (2010).
[Crossref]

M. Diwekar, V. Kamaev, J. Shi, and Z. V. Vardeny, “Optical and magneto-optical studies of two-dimensional metallodielectric photonic crystals on cobalt films,” Appl. Phys. Lett. 84, 3112 (2004).
[Crossref]

J. F. Torrado, J. B. González-Díaz, G. Armelles, A. García-Martín, A. Altube, M. López-García, J. F. Galisteo-López, A. Blanco, and C. López, “Tunable magneto-photonic response of nickel nanostructures,” Appl. Phys. Lett. 99, 193109 (2011).
[Crossref]

E. Melander, E. Östman, J. Keller, J. Schmidt, E. T. Papaioannou, V. Kapaklis, U. B. Arnalds, B. Caballero, A. García-Martín, J. C. Cuevas, and B. Hjorvarsson, “Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays,” Appl. Phys. Lett. 101, 063107 (2012).
[Crossref]

H. Fang, B. Caballero, E. M. Akinoglu, E. T. Papaioannou, A. García-Martín, J. C. Cuevas, M. Giersig, and P. Fumagalli, “Observation of a hole-size-dependent energy shift of the surface-plasmon resonance in Ni antidot thin films,” Appl. Phys. Lett. 106, 153104 (2015).
[Crossref]

J. Magn. Magn. Mater. (1)

V. I. Belotelov and A. K. Zvezdin, “Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry,” J. Magn. Magn. Mater. 300(1), e260–e263 (2006).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A: Pure Appl. Opt. 8, 458–463 (2006).
[Crossref]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
[Crossref]

JETP Lett. (1)

V. E. Kochergin, A. Yu. Toporov, and M. V. Valeiko, “Polariton enhancement of the Faraday magnetooptic effect,” JETP Lett. 68(5), 400–403 (1998).
[Crossref]

Materials (1)

A. N. Kuzmichev, L. E. Kreilkamp, M. Nur-E-Alam, E. Bezus, M. Vasiliev, I. A. Akimov, K. Alameh, M. Bayer, and V. I. Belotelov, “Tunable optical nanocavity of iron-garnet with a buried metal layer,” Materials 8, 3012–3023 (2015).
[Crossref]

Nano Lett. (1)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009).
[Crossref]

Nat. Commun. (1)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4, 1599 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotech. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotech. 6, 370–376 (2011).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

New J. Phys. (1)

J. F. Torrado, J. B. González-Díaz, A. García-Martín, and G. Armelles, “Unraveling the relationship between electromagnetic field intensity and the magnetic modulation of the wave vector of coupled surface plasmon polaritons,” New J. Phys. 15, 075025 (2013).
[Crossref]

Opt. Commun. (1)

A. Krishnan, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Opt. Express (3)

Phys. Rev. B (5)

E. T. Papaioannou, V. Kapaklis, M. Giersig, P. Fumagalli, A. García-Martín, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010).
[Crossref]

D. Whittaker and I. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

B. Caballero, A. García-Martín, and J. C. Cuevas, “Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems,” Phys. Rev. B 85, 245103 (2012).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

E. Ferreiro-Vila, J. González-Díaz, R. Fermento, M. González, A. García-Martín, J. García-Martín, A. Cebollada, G. Armelles, D. Meneses-Rodríguez, and E. Sandoval, “Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures,” Phys. Rev. B 80, 125132 (2009).
[Crossref]

Phys. Rev. Lett. (1)

V. Belotelov, L. Doskolovich, and A. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3, 041019 (2013).

Phys. Status Solidi (RRL) (1)

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. García-Martín, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010).
[Crossref]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[Crossref]

Small (1)

D. Meneses-Rodríguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. González, J. M. García-Martín, A. Cebollada, A. García-Martín, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 3317–3323 (2011).
[Crossref] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP Publishing, 1997).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic representation of the system under study where one can see the Au-Co-Au perforated membrane with a periodic array of holes forming a square lattice. We specify the values of different geometrical parameters such as the lattice constant, the hole diameter, and the membrane total thickness. We also indicate that in the Faraday configuration the Co magnetization, M, is perpendicular to the plane of the membrane and parallel to the light propagation. (b) Lateral cut of the hybrid membrane that sits on a glass substrate. We define here the Co thickness, tCo, and the Co depth or distance between the Co layer and the upper part of the membrane, d.

Fig. 2
Fig. 2

(a) Transmittance as a function of the wavelength and the thickness of the Co layer, which lies in the middle of the structure. (b) The corresponding magnitude of the coefficient tyx that describes the polarization conversion of the transmitted light. (c) Figure of merit (FoM), as defined in Eq. (1).

Fig. 3
Fig. 3

(a) Transmittance as a function of the wavelength and the position of a 10 nm-thick Co layer, measured with respect to the upper part of the hybrid membrane. (b) The corresponding value of the polarization conversion |tyx| and (c) figure of merit.

Fig. 4
Fig. 4

(a) Transmittance as a function of the wavelength and the index of refraction of the medium of incidence. The index of refraction of the substrate is 1.5. The Co layer has a thickness of 50 nm and it is placed in the middle of the membrane. (b) The corresponding value of |tyx| and (c) figure of merit. In all the panels, the short-dashed lines correspond to the position of the SPPs of the interface between the incidence medium and the upper Au layer, while the vertical long-dashed lines indicate the position of the SPPs in the interface between the lower Au layer and the substrate.

Fig. 5
Fig. 5

(a) Transmittance as a function of the wavelength and the index of refraction of the substrate. The index of refraction of the incident medium is 1.5. The Co layer has a thickness of 50 nm and it is placed in the middle of the membrane. (b) The corresponding value of |tyx| and (c) figure of merit. In all the panels, the dashed lines correspond to the position of the SPPs of the interface between the lower Au layer and the substrate.

Fig. 6
Fig. 6

(a) Faraday rotation and (b) Faraday ellipticity as a function of the wavelength and the thickness of the Co layer, which lies in the middle of the structure. The results correspond to those of Fig. 2.

Fig. 7
Fig. 7

(a) Faraday rotation and (b) Faraday ellipticity as a function of the wavelength and the position of a 10 nm-thick Co layer, measured with respect to the upper part of the hybrid membrane. The results correspond to those of Fig. 3.

Fig. 8
Fig. 8

(a) and (c) Cross section of the electric field distribution in the Au membrane at the resonance wavelength (λ = 710 nm) and out-of-resonance (λ = 655 nm), respectively. White dotted line represents the hole boundaries. (b) and (d) Mean value of the electric field in the Au membrane along the z-axis for λ = 710 nm and λ = 655 nm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FoM = Φ F T .
k spp ( λ ) = 2 π λ ε m ( λ ) ε d ε m ( λ ) + ε d ,
| Re { k spp ( λ n 1 , n 2 ) } | = | G n 1 , n 2 | ,

Metrics