Abstract

We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10−4/°C and dn/dT = −4.66 x10−4 RIU/°C, respectively.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
    [Crossref]
  2. V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
    [Crossref]
  3. X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
    [Crossref] [PubMed]
  4. T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
    [Crossref]
  5. K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
    [Crossref] [PubMed]
  6. W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
    [Crossref]
  7. G. Zhang, M. Yang, and Y. Wang, “Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing,” Opt. Commun. 329, 34–37 (2014).
    [Crossref]
  8. R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
    [Crossref]
  9. G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
    [Crossref] [PubMed]
  10. C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
    [Crossref]
  11. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
    [Crossref] [PubMed]
  12. R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
    [Crossref] [PubMed]
  13. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref] [PubMed]
  14. W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
    [Crossref]
  15. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
    [Crossref] [PubMed]
  16. T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett. 21(23), 1942–1944 (1996).
    [Crossref] [PubMed]
  17. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  18. J. H. Chen, J. R. Zhao, X. G. Huang, and Z. J. Huang, “Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass,” Appl. Opt. 49(29), 5592–5596 (2010).
    [Crossref] [PubMed]
  19. H. C. Cheng and Y. C. Liu, “Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography,” Appl. Opt. 49(5), 790–797 (2010).
    [Crossref] [PubMed]
  20. I. K. Ilev, R. W. Waynant, K. R. Byrnes, and J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett. 27(19), 1693–1695 (2002).
    [Crossref] [PubMed]
  21. X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
    [Crossref] [PubMed]
  22. T. Fukano and I. Yamaguchi, “Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope,” Appl. Opt. 38(19), 4065–4073 (1999).
    [Crossref] [PubMed]
  23. J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Opt. 48(13), 2461–2467 (2009).
    [Crossref] [PubMed]
  24. S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express 16(8), 5516–5526 (2008).
    [Crossref] [PubMed]
  25. S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express 22(22), 27392–27397 (2014).
    [Crossref] [PubMed]
  26. R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
    [Crossref]
  27. S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
    [Crossref]
  28. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
    [Crossref]
  29. K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
    [Crossref]
  30. C. Markos, K. Vlachos, and G. Kakarantzas, “Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber,” Opt. Express 18(23), 24344–24351 (2010).
    [Crossref] [PubMed]

2015 (4)

X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
[Crossref] [PubMed]

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
[Crossref] [PubMed]

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

2014 (5)

2013 (2)

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
[Crossref] [PubMed]

2010 (4)

2009 (2)

2008 (1)

2002 (2)

I. K. Ilev, R. W. Waynant, K. R. Byrnes, and J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett. 27(19), 1693–1695 (2002).
[Crossref] [PubMed]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

1999 (1)

1998 (1)

T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
[Crossref]

1997 (1)

1996 (2)

T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett. 21(23), 1942–1944 (1996).
[Crossref] [PubMed]

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

1995 (2)

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive index of highly scattering human tissue by optical coherence tomography,” Opt. Lett. 20(21), 2258–2260 (1995).
[Crossref] [PubMed]

1992 (1)

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

1986 (1)

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

1984 (1)

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

Ahmad, H.

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Anders, J. J.

Arya, V.

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

Bai, Y.

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Bouma, B. E.

Braun, P. F.

K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
[Crossref] [PubMed]

Brezinski, M. E.

Byrnes, K. R.

Chen, G.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Chen, J.

Chen, J. H.

Cheng, H. C.

Chinn, S. R.

Choi, E. S.

Choi, H. Y.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

de Vries, M.

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

Dimyati, K.

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Donlagic, D.

Fujimoto, J. G.

Fukano, T.

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Gray, D. F.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Han, M.

Harun, S. W.

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Hee, M. R.

Hou, W.

Huang, X. G.

Huang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Huang, Z. J.

Hussey, C. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

Ilev, I. K.

Jedrzejewski, K. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Kakarantzas, G.

Karrai, K.

K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
[Crossref] [PubMed]

Keil, R.

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

Kim, M. J.

Kim, S.

Klement, E.

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

Lan, X.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Lee, B. H.

Lee, C.

Li, C.

Li, F.

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

Li, J.

Li, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Lim, K. S.

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Liu, G.

Liu, Y. C.

Markos, C.

Martinez, F.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

Martínez-Ríos, A.

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

Mathyssek, K.

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

Minelly, J. D.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

Monzón-Hernández, D.

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

Moreno-Hernández, C. J.

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

Moreno-Hernández, D.

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

Na, J.

Niezrecki, C.

Ning, T.

Payne, F. P.

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

Pevec, S.

Qiao, X.

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
[Crossref] [PubMed]

Sorin, W. V.

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

Southern, J. F.

Swanson, E. A.

Tearney, G. J.

Thurner, K.

K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
[Crossref] [PubMed]

Tian, J.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Tian, Y.

Tio, C. K.

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Villatoro, J.

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

Vlachos, K.

Wang, A.

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

Wang, R.

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

R. Wang and X. Qiao, “Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
[Crossref] [PubMed]

Wang, T.

T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
[Crossref]

Wang, W.

Wang, X.

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
[Crossref] [PubMed]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Wang, Y.

G. Zhang, M. Yang, and Y. Wang, “Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing,” Opt. Commun. 329, 34–37 (2014).
[Crossref]

Waynant, R. W.

Wei, T.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Wen, X.

Wittmann, J.

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

Wu, N.

Xiao, H.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Xue, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Yamaguchi, I.

Yang, M.

G. Zhang, M. Yang, and Y. Wang, “Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing,” Opt. Commun. 329, 34–37 (2014).
[Crossref]

Yang, Z.

T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
[Crossref]

Zhang, C.

X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
[Crossref] [PubMed]

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Zhang, G.

G. Zhang, M. Yang, and Y. Wang, “Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing,” Opt. Commun. 329, 34–37 (2014).
[Crossref]

Zhang, L.

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

Zhao, J. R.

Zheng, S.

T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
[Crossref]

Zilio, S. C.

Appl. Opt. (5)

Electron. Lett. (2)

R. Keil, E. Klement, K. Mathyssek, and J. Wittmann, “Experimental investigation of the beam spot size radius in single-mode fibre tapers,” Electron. Lett. 20(15), 621–622 (1984).
[Crossref]

K. P. Jedrzejewski, F. Martinez, J. D. Minelly, C. D. Hussey, and F. P. Payne, “Tapered-beam expander for single-mode optical-fibre gap devices,” Electron. Lett. 22(2), 105–106 (1986).
[Crossref]

IEEE Photonics J. (1)

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, and H. Xiao, “Fringe visibility enhanced extrinsic Fabry-Perot interferometer using a graded index fiber collimator,” IEEE Photonics J. 2(3), 469–481 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R. Wang and X. Qiao, “Gas refractometer based on optical fiber extrinsic Fabry-Perot interferometer with open cavity,” IEEE Photonics Technol. Lett. 27(3), 245–248 (2015).
[Crossref]

C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández, and J. Villatoro, “Long-range interferometric displacement sensing with tapered optical fiber tips,” IEEE Photonics Technol. Lett. 27(4), 379–382 (2015).
[Crossref]

W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett. 4(1), 105–107 (1992).
[Crossref]

J. Biomed. Opt. (1)

X. Wang, C. Zhang, L. Zhang, L. Xue, and J. Tian, “Simultaneous refractive index and thickness measurements of bio tissue by optical coherence tomography,” J. Biomed. Opt. 7(4), 628–632 (2002).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Opt. Commun. (1)

G. Zhang, M. Yang, and Y. Wang, “Optical fiber-tip Fabry–Perot interferometer for hydrogen sensing,” Opt. Commun. 329, 34–37 (2014).
[Crossref]

Opt. Express (7)

Opt. Fiber Technol. (1)

V. Arya, M. de Vries, K. A. Murphy, A. Wang, and R. O. Claus, “Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism,” Opt. Fiber Technol. 1(4), 380–384 (1995).
[Crossref]

Opt. Lasers Eng. (1)

W. Wang and F. Li, “Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer,” Opt. Lasers Eng. 52, 201–205 (2014).
[Crossref]

Opt. Lett. (4)

Optik (Stuttg.) (1)

S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik (Stuttg.) 124(6), 538–543 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

K. Thurner, P. F. Braun, and K. Karrai, “Fabry-Pérot interferometry for long range displacement sensing,” Rev. Sci. Instrum. 84(9), 095005 (2013).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

T. Wang, S. Zheng, and Z. Yang, “A high precision displacement sensor using a low-finesse fiber-optic Fabry–Pérot interferometer,” Sens. Actuators A Phys. 69(2), 134–138 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Calculated mode MFD of the fundamental mode: of a SM fiber (dashed line) and a SM fiber tapered to 55 µm (continuous line), (b) Representation of the experimental set-up used to interrogate the FFPI.
Fig. 2
Fig. 2 (a) Reflection spectra of the extrinsic tapered FFPI for three different cavity lengths, (b) Calculated FFT modulus of the reflection spectra of the interferometer with four different cavity lengths.
Fig. 3
Fig. 3 (a) Schematic diagram that shows the disposition of the elements for samples measurement, (b) Optical spectrum of the SF-15 sample and mirror. (c) FFT of the optical spectrum showing the relation between peak position and distances from the fiber tip.
Fig. 4
Fig. 4 Results obtained with SF-15 glass sample. (a) Measurements of t and ng when glass is at different separation from the fiber tip. (b) The measurement of ng at a fixed distance during 80 minutes that shows the variations of the ng value due to temperature and/or vibrations.
Fig. 5
Fig. 5 (a) Scheme of the setup that shows the polymer sample in the container and tapered fiber tip. (b). Fourier domain interference peak positions obtained for measuring the group refractive index and thickness.
Fig. 6
Fig. 6 Plotted results of Sylgard 184 temperature vs. thickness and RI behavior due to the temperature change.

Tables (1)

Tables Icon

Table 1 Results for thickness measurement where we compared our method with the micrometer measures. Results for group refractive index measurements obtained with the method proposed compared to the theoretical ng at l = 1550nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

O P D = X 2 X 1
t = O P D ( X 4 X 3 )
n g = O P D t

Metrics