Abstract

We proposed a cascaded amplitude equalizer used for high speed visible light communications (VLC) system. With the cascaded pre-equalization circuit, the −3dB bandwidth of VLC system can be extended from 17MHz to 366MHz using a commercially available phosphorescent white LED, a blue filter and a differential outputs PIN receiver. The data rate is 1.60Gbit/s exploiting 16QAM-OFDM with 400MHz modulation bandwidth over 1m free-space transmission under pre-forward error correction (pre-FEC) limit of 3.8 × 10−3. To our knowledge, this is the highest data rate ever achieved by using a commercially available phosphorescent white LED in VLC system.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive 84.44−190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance

C. H. Yeh, C. W. Chow, H. Y. Chen, J. Chen, and Y. L. Liu
Opt. Express 22(8) 9783-9788 (2014)

3.4 Gbit/s visible optical wireless transmission based on RGB LED

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella
Opt. Express 20(26) B501-B506 (2012)

References

  • View by:
  • |
  • |
  • |

  1. H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  2. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  3. H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of ECOC (ECOC, 2008), paper P.6.09.
  4. N. Fujimoto and H. Mochizuki, “614 Mbit/s OOK-based transmission by the duobinary technique using a single commercially available visible LED for high-speed visible light communications,” in Proceedings of ECOC (ECOC, 2012), paper P4.03.
    [Crossref]
  5. N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of ECOC (ECOC, 2014), paper P7.7.
    [Crossref]
  6. H. Li, X. Chen, J. Guo, and H. Chen, “A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application,” Opt. Express 22(22), 27203–27213 (2014).
    [Crossref] [PubMed]
  7. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  8. N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett. 12(1), 010605 (2014).
    [Crossref]
  9. G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distance (≥1.5 m),” in Proceedings of ECOC (ECOC, 2014), paper We.3.6.4.
    [Crossref]
  10. Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
    [Crossref] [PubMed]
  11. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  12. X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s Visible Light Communications employing 64QAM-OFDM Based on Amplitude Equalization Circuit,” in Proceedings of OFC (OFC 2015), paper Tu2G.1.
    [Crossref]
  13. J. S. Bell, “An approach to the design of constant-resistance amplitude equalizer networks,” in Proceedings of the IEE-Part B: Radio and Electronic Engineering (IEEE, 1958), pp. 185–189.
    [Crossref]
  14. S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
    [Crossref]

2015 (1)

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (2)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

2008 (1)

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Bell, J. S.

J. S. Bell, “An approach to the design of constant-resistance amplitude equalizer networks,” in Proceedings of the IEE-Part B: Radio and Electronic Engineering (IEEE, 1958), pp. 185–189.
[Crossref]

Chen, F.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Chen, H.

Chen, X.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

H. Li, X. Chen, J. Guo, and H. Chen, “A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application,” Opt. Express 22(22), 27203–27213 (2014).
[Crossref] [PubMed]

Chi, N.

Choudhury, P.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Cossu, G.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Faulkner, G.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Guo, J.

He, S.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Huang, X.

Jung, D.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Lee, K.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Le-Minh, H.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Li, H.

Liang, L.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Lu, W.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Lu, X.

O’Brien, D. C.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Oh, Y.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Shang, H.

Wang, S.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Wang, Y.

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett. 12(1), 010605 (2014).
[Crossref]

N. Chi, Y. Wang, Y. Wang, X. Huang, and X. Lu, “Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats,” Chin. Opt. Lett. 12(1), 010605 (2014).
[Crossref]

Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
[Crossref] [PubMed]

Y. Wang, X. Huang, J. Zhang, Y. Wang, and N. Chi, “Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS,” Opt. Express 22(13), 15328–15334 (2014).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Yu, J.

Zeng, L.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zhang, J.

Chin. Opt. Lett. (1)

IEEE Photonics J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s Transmission Over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photonics Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

IEEE Wireless Commun. (1)

S. Wang, F. Chen, L. Liang, S. He, Y. Wang, X. Chen, and W. Lu, “A high-performance blue filter for a white-led-based visible light communication system,” IEEE Wireless Commun. 22(2), 61–67 (2015).
[Crossref]

Opt. Express (4)

Other (6)

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distance (≥1.5 m),” in Proceedings of ECOC (ECOC, 2014), paper We.3.6.4.
[Crossref]

H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “80 Mbit/s visible light communications using pre-equalized white LED,” in Proceedings of ECOC (ECOC, 2008), paper P.6.09.

N. Fujimoto and H. Mochizuki, “614 Mbit/s OOK-based transmission by the duobinary technique using a single commercially available visible LED for high-speed visible light communications,” in Proceedings of ECOC (ECOC, 2012), paper P4.03.
[Crossref]

N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques,” in Proceedings of ECOC (ECOC, 2014), paper P7.7.
[Crossref]

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s Visible Light Communications employing 64QAM-OFDM Based on Amplitude Equalization Circuit,” in Proceedings of OFC (OFC 2015), paper Tu2G.1.
[Crossref]

J. S. Bell, “An approach to the design of constant-resistance amplitude equalizer networks,” in Proceedings of the IEE-Part B: Radio and Electronic Engineering (IEEE, 1958), pp. 185–189.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Proposed two cascaded constant-resistance symmetrical bridged-T amplitude equalizer.
Fig. 2
Fig. 2 Block diagram of frequency response measurement for VLC system.
Fig. 3
Fig. 3 Measured forward transmission gains of only equalizer.
Fig. 4
Fig. 4 Measured forward transmission gains (a) output + and (b) output- of the differential outputs in VLC system.
Fig. 5
Fig. 5 The experimental setup of VLC system.
Fig. 6
Fig. 6 Measured electrical spectra: output of AWG (a) @-34.0dBm and (d) @18.4dBm; after VLC system (b) without equalizer @-34.0dBm; (c) with equalizer @-34.0dBm; (e) without equalizer @18.4dBm and (f) with equalizer @18.4dBm.
Fig. 7
Fig. 7 Measured BER results versus different input power to VLC system with pre-equalizer and without equalizer.
Fig. 8
Fig. 8 Measured BER results versus bias current with pre-equalizer @-18.4dBm and without equalizer @-34.0dBm.
Fig. 9
Fig. 9 BERs versus various modulation bandwidths (a) distance = 100cm; (d) distance = 200cm.
Fig. 10
Fig. 10 Total data rate versus transmission distance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z 11 = ( R 1 × ( 1 j ω C 1 + j ω L 1 ) ) / ( R 1 + 1 j ω C 1 + j ω L 1 )
Z 22 = ( 1 j ω C 2 × j ω L 2 ) / ( 1 j ω C 2 + j ω L 2 ) + R 4
S 21 E q u a l i z e r 1 = 1 1 + R L R 4 + j ω L 1 / ( 1 ω 2 C 1 L 1 )
S 21 = 1 ( 1 + R L R 4 + j ω L 1 / ( 1 ω 2 C 1 L 1 ) ) ( 1 + R L R 8 + j ω L 3 / ( 1 ω 2 C 3 L 3 ) )
S 21 = 2 V o u t / V i n = 2 * H e q u a l i z e r

Metrics