Abstract

We present a terahertz quasi time domain spectroscopy (QTDS) system setup which is improved regarding cost and compactness. The diode laser is mounted directly onto the optical delay line, making the optical setup more compact. The system is operated using a Raspberry Pi and an additional sound card. This combination replaces the desktop/laptop computer, the lock-in-amplifier, the stage controller and the signal generator. We examined not only a commercially available stepper motor driven delay line, but also the repurposed internal mechanics from a DVD drive. We characterize the performance of the new system concept.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Periodic sampling errors in terahertz time-domain measurements

Arno Rehn, David Jahn, Jan. C. Balzer, and Martin Koch
Opt. Express 25(6) 6712-6724 (2017)

Toward real-time terahertz imaging

Hichem Guerboukha, Kathirvel Nallappan, and Maksim Skorobogatiy
Adv. Opt. Photon. 10(4) 843-938 (2018)

Terahertz spectrometer operation by laser repetition frequency tuning

Rafal Wilk, Thomas Hochrein, Martin Koch, Michael Mei, and Ronald Holzwarth
J. Opt. Soc. Am. B 28(4) 592-595 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
    [Crossref]
  2. T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
    [Crossref]
  3. N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
    [Crossref]
  4. B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.
  5. I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
    [Crossref]
  6. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
    [Crossref] [PubMed]
  7. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
    [Crossref]
  8. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
    [Crossref]
  9. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
    [Crossref]
  10. R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
    [Crossref] [PubMed]
  11. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
    [Crossref]
  12. R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 1–9 (2015).
    [Crossref]
  13. M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
    [Crossref] [PubMed]
  14. M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
    [Crossref]
  15. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
    [Crossref]
  16. C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
    [Crossref] [PubMed]
  17. F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

2015 (2)

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 1–9 (2015).
[Crossref]

2014 (2)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

2013 (1)

I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

2010 (2)

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

2009 (3)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[Crossref] [PubMed]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
[Crossref] [PubMed]

2006 (2)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

2005 (2)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Amenabar, I.

I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Araki, T.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Bartels, A.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

Bastian, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Dekorsy, T.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

Deninger, A.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dietz, R.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Dietz, R. J. B.

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Gente, R.

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 1–9 (2015).
[Crossref]

Globisch, B.

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Göbel, T.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Hangyo, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Hasek, T.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Hochrein, T.

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Holzwarth, R.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

Hudert, F.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

Iwasawa, H.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Janke, C.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Jördens, C.

Koch, M.

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 1–9 (2015).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy,” Opt. Express 17(20), 17723–17733 (2009).
[Crossref] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[Crossref] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Köhler, K.

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

Kretschmer, K.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Krumbholz, N.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Kurihara, K.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Kuwashima, F.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Leisching, P.

Lopez, F.

I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Matsuura, S.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

Mei, M.

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

Mendikute, A.

I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

Mikulics, M.

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

C. Jördens, M. Scheller, M. Wichmann, M. Mikulics, K. Wiesauer, and M. Koch, “Terahertz birefringence for orientation analysis,” Appl. Opt. 48(11), 2037–2044 (2009).
[Crossref] [PubMed]

Morikawa, O.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

Nagashima, T.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Puppe, T.

Rettich, F.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Roehle, H.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

Saneyoshi, E.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Schell, M.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Scheller, M.

Shirao, T.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Stanze, D.

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Tani, M.

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Vieweg, N.

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

R. J. B. Dietz, N. Vieweg, T. Puppe, A. Zach, B. Globisch, T. Göbel, P. Leisching, and M. Schell, “All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling,” Opt. Lett. 39(22), 6482 (2014).
[Crossref] [PubMed]

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Wichmann, M.

Wiesauer, K.

Wilk, R.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

Yamamoto, K.

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

Yasui, T.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Zach, A.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006).
[Crossref]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89(22), 221911 (2006).
[Crossref]

J. Infrared, Millimeter, and Terahertz Waves (1)

N. Vieweg, F. Rettich, A. Deninger, H. Roehle, R. Dietz, T. Göbel, and M. Schell, “Terahertz-time domain spectrometer with 90 dB peak dynamic range,” J. Infrared, Millimeter, and Terahertz Waves 35(10), 823–832 (2014).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (3)

T. Hochrein, “Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends,” J. Infrared, Millimeter, Terahertz Waves 36(3), 235–254 (2015).
[Crossref]

I. Amenabar, F. Lopez, and A. Mendikute, “In introductory review to THz non-destructive testing of composite mater,” J. Infrared, Millimeter, Terahertz Waves 34(2), 152–169 (2013).
[Crossref]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared, Millimeter, Terahertz Waves 32(5), 596–602 (2010).
[Crossref]

Laser Photon. Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – modern techniques and applications,” Laser Photon. Rev. 5, 124–166 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Plant Methods (1)

R. Gente and M. Koch, “Monitoring leaf water content with THz and sub-THz waves,” Plant Methods 11(1), 1–9 (2015).
[Crossref]

Polym. Test. (1)

N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28(1), 30–35 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers,” Semicond. Sci. Technol. 20(7), 151–163 (2005).
[Crossref]

Other (2)

F. Kuwashima, T. Shirao, M. Tani, K. Kurihara, K. Yamamoto, M. Hangyo, T. Nagashima, and H. Iwasawa, “Generation of a wide range and stable THz wave using an optical fiber and a laser chaos,” in Proceedings of IEEE Conference Infrared, Millimeter, and Terahertz Waves (IEEE, 2012), pp. 1–2.

B. Globisch, R. J. B. Dietz, D. Stanze, H. Roehle, T. Göbel, and M. Schell, “Improved InGaAs/InAlAs photoconductive THz receivers: 5.8 THz bandwidth and 80 dB dynamic range,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SF2F.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1: THz QTDS system setup with (a) standard setup and (b) optimized and compact system setup. Laser path to the detector (Rx) antenna has length lD (yellow green), laser path to the emitter (Tx) antenna has length lE (blue) and the THz path has length lTHz (dark green).
Fig. 2:
Fig. 2: System components and signal processing scheme.
Fig. 3:
Fig. 3: A photo of the setup using the (TL) stage. Optical paths are color coded like in Fig. 1.
Fig. 4:
Fig. 4: Investigation of jitter and reproducibility of the measurements: Long term measurement over 500 scans in forward and backward direction obtained with stage (TL) at 2 ps/s. The pulse train shows no temporal drift or large jitter over the whole measurement period.
Fig. 5:
Fig. 5: Autocorrelation signal of QTDS time domain signal with equidistant pulse spacings of ΔT = 1/ΔfM = 41.15 ps. Recorded with the (TL) stage.
Fig. 6:
Fig. 6: 25 measurements with the (TL) and (LC) delay lines. Temporal reproducibility is very good for both stages, showing no drift of large jitter.
Fig. 7:
Fig. 7: Investigation of the birefringence of LCP material with 30 vol% glass fiber. Reference measurement in blue, LCP at 0° in green, LCP at 90° in red. The pulses obtained with the (LC) stage are more noisy, but the seperation induced by the different refractive indices is still clearly visible.
Fig. 8:
Fig. 8: Recovered time axis (blue) and best linear fit (red) for both stage types. The (TL) stage shows near perfect linear movement, while the (LC) stage exhibits strong non-linearities. Time axes are clipped for better visibility.
Fig. 9:
Fig. 9: Deviation from linear movement for both the (TL) and (LC) stages (blue), overlaid with the motor driving signal (gray, arbitrarily scaled). While the deviation of the (TL) stage is practically not visible at this scale, the (LC) stage exhibits strong periodic deviations which correlate with the driving signal (and thus, the motor position).
Fig. 10:
Fig. 10: Correction of the deviation from linear movement (blue) with a fitted model function (green) and the remaining deviation after correction (red). With the simple model function, the difference to linearity can be reduced by a factor of 3 to 3.5. Since the remainder still shows the same periodic features for both measurement speeds, the model function is likely not yet ideal and can be improved.

Tables (3)

Tables Icon

Table 1: Features of the deployed stepper motor based delay lines.

Tables Icon

Table 2: Measured refractive indices of the LCP sample. The error is estimated based on the reproducibility of the respective stage alone.

Tables Icon

Table 3: Standard deviation σ and worst-case point-to-point time difference Δtmax of the correct time axes of stage (LC).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

l E + l THz = l D ± 2 Δ x ,
l E Δ x + l THz = l D ± Δ x l E + l THz = l D ± 2 Δ x ,
F ( t ) = i = 1 4 a i sin ( b i t + c i )

Metrics