Abstract

Adaptive optics is rapidly transforming microscopy and high-resolution ophthalmic imaging. The adaptive elements commonly used to control optical wavefronts are liquid crystal spatial light modulators and deformable mirrors. We introduce a novel Multi-actuator Adaptive Lens that can correct aberrations to high order, and which has the potential to increase the spread of adaptive optics to many new applications by simplifying its integration with existing systems. Our method combines an adaptive lens with an imaged-based optimization control that allows the correction of images to the diffraction limit, and provides a reduction of hardware complexity with respect to existing state-of-the-art adaptive optics systems. The Multi-actuator Adaptive Lens design that we present can correct wavefront aberrations up to the 4th order of the Zernike polynomial characterization. The performance of the Multi-actuator Adaptive Lens is demonstrated in a wide field microscope, using a Shack-Hartmann wavefront sensor for closed loop control. The Multi-actuator Adaptive Lens and image-based wavefront-sensorless control were also integrated into the objective of a Fourier Domain Optical Coherence Tomography system for in vivo imaging of mouse retinal structures. The experimental results demonstrate that the insertion of the Multi-actuator Objective Lens can generate arbitrary wavefronts to correct aberrations down to the diffraction limit, and can be easily integrated into optical systems to improve the quality of aberrated images.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo fluorescent imaging of the mouse retina using adaptive optics

David P. Biss, Daniel Sumorok, Stephen A. Burns, Robert H. Webb, Yaopeng Zhou, Thomas G. Bifano, Daniel Côté, Israel Veilleux, Parisa Zamiri, and Charles P. Lin
Opt. Lett. 32(6) 659-661 (2007)

Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

Yifan Jian, Jing Xu, Martin A. Gradowski, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 5(2) 547-559 (2014)

High-resolution retinal imaging with micro adaptive optics system

Saisai Niu, Jianxin Shen, Chun Liang, Yunhai Zhang, and Bangming Li
Appl. Opt. 50(22) 4365-4375 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
    [Crossref] [PubMed]
  2. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  3. C. Dainty, Adaptive Optics for Industry and Medicine:Proceedings of the Sixth International Workshop (Imperial College Press, 2008).
  4. R. Tyson, Adaptive Optics Engineering Handbook (CRC Press, 1999).
  5. A. F. Naumov and G. Vdovin, “Multichannel liquid-crystal-based wave-front corrector with modal influence functions,” Opt. Lett. 23(19), 1550–1552 (1998).
    [Crossref] [PubMed]
  6. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref] [PubMed]
  7. D. Graham-Rowe, “Liquid lens make a splash,” Nat. Photonics,  2006, 2–4 (2006).
  8. H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [Crossref]
  9. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  10. F. Schneider, D. Eberhard, D. Strohmeier, C. Muller, and U. Wallrabe, “Adaptive Fluidic PDMS-Lens with integrated piezoelectric actuator,” IEEE 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, 120–123 (2008).
    [Crossref]
  11. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  12. S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
    [Crossref] [PubMed]
  13. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
    [Crossref]
  14. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, “High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens,” Opt. Lett. 33(18), 2146–2148 (2008).
    [Crossref] [PubMed]
  15. I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22(26), 31746–31760 (2014).
    [Crossref] [PubMed]
  16. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction of a Gaussian laser beam with an ultrasonic wave of cylindrical symmetry,” Appl. Opt. 46(23), 5870–5876 (2007).
    [Crossref] [PubMed]
  17. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5(2), 547–559 (2014).
    [Crossref] [PubMed]
  18. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24(5), 1373–1383 (2007).
    [Crossref] [PubMed]
  19. G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16(5), 2859–2866 (2008).
    [Crossref] [PubMed]
  20. S. Bonora and L. Poletto, “Push-pull membrane mirrors for adaptive optics,” Opt. Express 14(25), 11935–11944 (2006).
    [Crossref] [PubMed]
  21. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
    [Crossref] [PubMed]
  22. A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(7), 6 (2011).
    [PubMed]
  23. J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
    [Crossref] [PubMed]
  24. Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
    [Crossref] [PubMed]
  25. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
    [Crossref] [PubMed]
  26. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
    [Crossref] [PubMed]
  27. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express 3(4), 715–734 (2012).
    [Crossref] [PubMed]
  28. G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
    [Crossref] [PubMed]
  29. M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
    [Crossref]
  30. K. S. K. Wong, Y. Jian, M. Cua, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography,” Biomed. Opt. Express 6(2), 580–590 (2015).
    [Crossref] [PubMed]
  31. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (3)

S. Shian, R. M. Diebold, and D. R. Clarke, “Tunable lenses using transparent dielectric elastomer actuators,” Opt. Express 21(7), 8669–8676 (2013).
[Crossref] [PubMed]

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (5)

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express 2(4), 717–738 (2011).
[Crossref] [PubMed]

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(7), 6 (2011).
[PubMed]

2010 (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (4)

2006 (3)

S. Bonora and L. Poletto, “Push-pull membrane mirrors for adaptive optics,” Opt. Express 14(25), 11935–11944 (2006).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

D. Graham-Rowe, “Liquid lens make a splash,” Nat. Photonics,  2006, 2–4 (2006).

2005 (1)

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

2000 (1)

R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
[Crossref] [PubMed]

1998 (2)

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Ahmad, K.

Alexander, N. S.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Arnold, C. B.

Banks, M. S.

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Bonora, S.

Booth, M. J.

Carpi, F.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Carroll, J.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Chateau, N.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Choi, S. S.

Clarke, D. R.

Cua, M.

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Diebold, R. M.

Doble, N.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Dong, Z.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Dubra, A.

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Gao, J.

Geng, Y.

Golczak, M.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Gradowski, M. A.

Graham-Rowe, D.

D. Graham-Rowe, “Liquid lens make a splash,” Nat. Photonics,  2006, 2–4 (2006).

Grulkowski, I.

Guralnik, I. R.

Hands, P. J. W.

Hoffman, D. M.

Hunter, J. J.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Jankowski, D.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Jian, Y.

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Jones, S. M.

Kay, D. B.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Kirby, A. K.

Kwiek, P.

Lamory, B.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Libby, R. T.

Loktev, M.

Loktev, M. Y.

Lombardo, M.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Love, G. D.

Marchetti, E.

R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
[Crossref] [PubMed]

McLeod, E.

Merigan, W. H.

Mermillod-Blondin, A.

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Miller, D. T.

Naumov, A. F.

Oliver, S. S.

Palczewska, G.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Palczewski, K.

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Poletto, L.

Ragazzoni, R.

R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
[Crossref] [PubMed]

Ren, H.

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Roorda, A.

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(7), 6 (2011).
[PubMed]

Samokhin, A.

Sarunic, M. V.

Schery, L. A.

Scoles, D.

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

Sharma, R.

Shian, S.

Soloviev, O.

Szulzycki, K.

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Valente, G.

R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
[Crossref] [PubMed]

Vdovin, G.

Werner, J. S.

Williams, D. R.

Wojtkowski, M.

Wong, K. S. K.

Wu, S.-T.

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Xu, J.

Yin, L.

Yoon, G.

Zacharria, M.

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Zawadzki, R. J.

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater. 21(21), 4152–4158 (2011).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[Crossref]

Biomed. Opt. Express (4)

Curr. Eye Res. (1)

J. Carroll, D. B. Kay, D. Scoles, A. Dubra, and M. Lombardo, “Adaptive optics retinal imaging--clinical opportunities and challenges,” Curr. Eye Res. 38(7), 709–721 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Jian, R. J. Zawadzki, and M. V. Sarunic, “Adaptive optics optical coherence tomography for in vivo mouse retinal imaging,” J. Biomed. Opt. 18(5), 056007 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Vis. (1)

A. Roorda, “Adaptive optics for studying visual function: a comprehensive review,” J. Vis. 11(7), 6 (2011).
[PubMed]

Nat. Med. (1)

G. Palczewska, Z. Dong, M. Golczak, J. J. Hunter, D. R. Williams, N. S. Alexander, and K. Palczewski, “Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye,” Nat. Med. 20(7), 785–789 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Graham-Rowe, “Liquid lens make a splash,” Nat. Photonics,  2006, 2–4 (2006).

M. Zacharria, B. Lamory, and N. Chateau, “Biomedical imaging: New view of the eye,” Nat. Photonics 5(1), 24–26 (2011).
[Crossref]

Nature (2)

R. Ragazzoni, E. Marchetti, and G. Valente, “Adaptive-optics corrections available for the whole sky,” Nature 403(6765), 54–56 (2000).
[Crossref] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Vision Res. (1)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[Crossref] [PubMed]

Other (3)

C. Dainty, Adaptive Optics for Industry and Medicine:Proceedings of the Sixth International Workshop (Imperial College Press, 2008).

R. Tyson, Adaptive Optics Engineering Handbook (CRC Press, 1999).

F. Schneider, D. Eberhard, D. Strohmeier, C. Muller, and U. Wallrabe, “Adaptive Fluidic PDMS-Lens with integrated piezoelectric actuator,” IEEE 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, 120–123 (2008).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (1832 KB)      The image sequence during the closed loop correction.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Integration of adaptive optics with existing imaging systems. a) scheme of a generic imaging system; b) implementation of a closed-loop adaptive optics system with a deformable mirror on the system of panel a). c) Concept of the adaptive optics system based on the integration of the M-AL and an image-based control algorithm.

Fig. 2
Fig. 2

Layout of the Multi-actuators Adaptive Lens. Panel a-c) show the measured wavefront deformations (arrows) and the interferograms relative to the actuation of the M-AL in three different configurations: a) one electrode on the top window, b) one electrode on the bottom window, c) all the actuators poked with the same voltage value.

Fig. 3
Fig. 3

Experimental layout. BS beam splitter, Wfs wavefront sensor, f1 = 100 mm, f2 = 150 mm, f3 = 60 mm. Plane A (adaptive lens) and B (Wfs) are optically conjugated.

Fig. 4
Fig. 4

Measurement of the generation of wavefronts and the far field of the 4th order Zernike polynomials. Note that astigmatism has been summed with defocus to generate a cylindrical wavefront. The third column reports the wavefront represented as an interferogram.

Fig. 5
Fig. 5

Top panel: Zernike polynomial decomposition of the aberration introduced by the phase plate, with the adaptive lens flattened with the closed loop, and of the residual aberration after correction. Middle panel: image before and after closed loop correction and (Visualization 1) the image sequence during the closed loop correction. The yellow insets show the central part magnified of two times. Bottom panel: Point Spread Function (PSF), PSF X and Y cross section before (black) and after (red) the correction and wavefront represented as an interferogram.

Fig. 6
Fig. 6

System topology of the compact wavefront-sensorless Adaptive Lens FD OCT system (LOBJ, 25 mm focal length lens; NA = 0.26). SLD, superluminescent diode; PC, polarization controller; DC, dispersion compensation; ND, neutral density filters; M, mirror; 2D GM, x and y galvanometer mounted mirrors were separated by a telescope but are shown combined for convenience; AL, adaptive lens.

Fig. 7
Fig. 7

Adaptive Lens FD OCT images of mouse nerve fiber layer in vivo before a) and after b) the adaptive lens optimization. c) Merit function progression during the wavefront-sensorless optimization process. Scale bar: 20μm.

Tables (1)

Tables Icon

Table 1 Measured Peak to Valley amplitude of the Zernike polynomials which is possible to generate with the adaptive lens (measured at 670 nm)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w f ( x , y ) = 2 π λ n [ L 1 ( x , y ) L 2 ( x , y ) ] = 2 π λ n [ 1 8 e 1 i ( x , y ) c 1 i 9 16 e 2 i ( x , y ) c 2 i ] ,

Metrics