Abstract

Abstract: Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-coupler slits.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides

Minsu Kang, Junghyun Park, Il-Min Lee, and Byoungho Lee
Opt. Express 17(2) 676-687 (2009)

Plasmonic in-plane total internal reflection: azimuthal polarized beam focusing and application

Zixiao Wang, Guobin Ren, Yixiao Gao, Bofeng Zhu, and Shuisheng Jian
Opt. Express 25(20) 23989-24000 (2017)

Ultra-short plasmonic splitters and waveguide cross-over based on coupled surface plasmon slot waveguides

Yi-Jiao Fang, Zhuo Chen, Ling Chen, Kai-Ting He, Zhen-lv Han, and Zhen-Lin Wang
Opt. Express 19(3) 2562-2572 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  5. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).
  6. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
    [Crossref] [PubMed]
  7. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  8. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [Crossref] [PubMed]
  9. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
    [Crossref] [PubMed]
  10. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
    [Crossref]
  11. L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
    [Crossref] [PubMed]
  12. L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
    [Crossref] [PubMed]
  13. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
    [Crossref] [PubMed]
  14. C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
    [Crossref] [PubMed]
  15. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
    [Crossref] [PubMed]
  16. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
    [Crossref] [PubMed]
  17. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  18. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
    [Crossref] [PubMed]
  19. R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
    [Crossref] [PubMed]
  20. C. Haffner, W. Heni, Y. Fedoryshyn, D. L. Elder, A. Melikyan, B. Baeuerle, J. Niegemann, A. Emboras, A. Josten, F. Ducry, M. Kohl, L. R. Dalton, D. Hillerkuss, C. Hafner, and J. Leuthold, “High-speed plasmonic Mach–Zehnder modulator in a waveguide,” in Eur. Conf. Opt. Com. (ECOC, 2014), paper PD.2.6.
  21. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
    [Crossref]
  22. B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).
  23. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [Crossref] [PubMed]
  24. H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
    [Crossref]
  25. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [Crossref] [PubMed]
  26. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
    [Crossref]
  27. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref] [PubMed]
  28. Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22(25), 30807–30814 (2014).
    [Crossref] [PubMed]
  29. D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
    [Crossref] [PubMed]
  30. V. A. Aksyuk, “Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch,” Opt. Express 23(9), 11404–11411 (2015).
    [Crossref] [PubMed]
  31. B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
    [Crossref]
  32. P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
    [Crossref]
  33. R. Yang and Z. Lu, “Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices,” IEEE Photonics Technol. Lett. 23(22), 1652–1654 (2011).
    [Crossref]
  34. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  35. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
    [Crossref]
  36. R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
    [Crossref]

2015 (3)

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

V. A. Aksyuk, “Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch,” Opt. Express 23(9), 11404–11411 (2015).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

2014 (3)

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Opt. Express 22(25), 30807–30814 (2014).
[Crossref] [PubMed]

2013 (3)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

2012 (3)

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

2011 (5)

R. Yang and Z. Lu, “Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices,” IEEE Photonics Technol. Lett. 23(22), 1652–1654 (2011).
[Crossref]

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

2010 (1)

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

2009 (5)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[Crossref] [PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[Crossref]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

2007 (2)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

2006 (2)

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

2005 (5)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Aksyuk, V.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

Aksyuk, V. A.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

V. A. Aksyuk, “Design and modeling of an ultra-compact 2x2 nanomechanical plasmonic switch,” Opt. Express 23(9), 11404–11411 (2015).
[Crossref] [PubMed]

Albrektsen, O.

Alloatti, L.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Aussenegg, F. R.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Blumberg, G.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

Bokor, J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[Crossref]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15(25), 16667–16680 (2007).
[Crossref] [PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Bussmann, K.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Cabrini, S.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Chen, B.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Chen, Y.

Chichkov, B. N.

Choo, H.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Chuvilin, A.

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Czaplewski, D. A.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

Dai, J.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Dennis, B. S.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Dinu, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Ditlbacher, H.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Drezet, A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Evlyukhin, A. B.

Fainman, Y.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Fang, N.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Feng, L.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Flynn, R. A.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Freude, W.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Geluk, E. J.

Gramotnev, D. K.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

Haftel, M. I.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Hill, M. T.

Hillenbrand, R.

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Hillerkuss, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Hohenau, A.

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Huang, T. J.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[Crossref]

Karouta, F.

Kim, C. S.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Kim, M. K.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Kippenberg, T. J.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Kiyan, R.

Koev, S. T.

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

Kohl, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Koos, C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Korn, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Krenn, J. R.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Kurth, M. L.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Leitner, A.

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Leong, E. S. P.

Leuthold, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Li, L.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Li, T.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Liu, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Liu, Z.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Lomakin, V.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Long, J. P.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Lopez, D.

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

Lu, Z.

R. Yang and Z. Lu, “Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices,” IEEE Photonics Technol. Lett. 23(22), 1652–1654 (2011).
[Crossref]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).

Marell, M.

Melikyan, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Mikkelsen, M. H.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nielsen, M. G.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref] [PubMed]

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

Ning, C. Z.

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Nötzel, R.

Oei, Y. S.

Palmer, R.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Passinger, S.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Polman, A.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Pors, A.

Qiu, M.

Reinhardt, C.

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Sarriugarte, P.

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

Schindler, P. C.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Schnell, M.

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

Schuck, P. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Seok, T. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Simpkins, B. S.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Slutsky, B.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Smalbrugge, B.

Smit, M. K.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[Crossref]

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Staffaroni, M.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Steele, J. M.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steinberger, B.

Stepanov, A. L.

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, M.

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tan, S. J.

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Tetz, K. A.

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

Thijssen, R.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Valentine, J.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

van Veldhoven, P. J.

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Verhagen, E.

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Vurgaftman, I.

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Wang, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Wang, S. M.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Wang, Y.

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Wu, M. C.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

Yablonovitch, E.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Yan, M.

Yang, R.

R. Yang and Z. Lu, “Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices,” IEEE Photonics Technol. Lett. 23(22), 1652–1654 (2011).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).

Zentgraf, T.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Zhang, X.

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhao, C.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhao, Y.

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Zhu, S.

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Zhu, X.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Zhu, Y.

ACS Photonics (1)

P. Sarriugarte, M. Schnell, A. Chuvilin, and R. Hillenbrand, “Polarization-resolved near-field characterization of nanoscale infrared modes in transmission lines fabricated by gallium and helium ion beam milling,” ACS Photonics 1(7), 604–611 (2014).
[Crossref]

Appl. Phys. Lett. (2)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[Crossref]

L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, “Fourier plasmonics: diffractive focusing of in-plane surface plasmon polariton waves,” Appl. Phys. Lett. 91(8), 081101 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Yang and Z. Lu, “Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices,” IEEE Photonics Technol. Lett. 23(22), 1652–1654 (2011).
[Crossref]

J. Appl. Phys. (3)

B. S. Dennis, V. Aksyuk, M. I. Haftel, S. T. Koev, and G. Blumberg, “Enhanced coupling between light and surface plasmons by nano-structured Fabry–Perot resonator,” J. Appl. Phys. 110(6), 066102 (2011).
[Crossref]

R. A. Flynn, K. Bussmann, B. S. Simpkins, I. Vurgaftman, C. S. Kim, and J. P. Long, “Propagation length of surface plasmon polaritons determined by emission from introduced surface discontinuities,” J. Appl. Phys. 107(1), 013109 (2010).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Nano Lett. (9)

L. Li, T. Li, S. Wang, S. Zhu, and X. Zhang, “Broad band focusing and demultiplexing of in-plane propagating surface plasmons,” Nano Lett. 11(10), 4357–4361 (2011).
[Crossref] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic dimple lens for nanoscale focusing of light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

R. Thijssen, E. Verhagen, T. J. Kippenberg, and A. Polman, “Plasmon nanomechanical coupling for nanoscale transduction,” Nano Lett. 13(7), 3293–3297 (2013).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: A metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

D. K. Gramotnev, M. G. Nielsen, S. J. Tan, M. L. Kurth, and S. I. Bozhevolnyi, “Gap surface plasmon waveguides with enhanced integration and functionality,” Nano Lett. 12(1), 359–363 (2012).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Zhao, Y. Liu, Y. Zhao, N. Fang, and T. J. Huang, “A reconfigurable plasmofluidic lens,” Nat. Commun. 4, 2305 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol. 6(3), 151–155 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–844 (2012).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8(3), 229–233 (2014).
[Crossref]

B. S. Dennis, M. I. Haftel, D. A. Czaplewski, D. Lopez, G. Blumberg, and V. A. Aksyuk, “Compact nanomechanical plasmonic phase modulators,” Nat. Photonics 9(4), 267–273 (2015).

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3–4), 131–314 (2005).

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009).
[Crossref]

Phys. Rev. Lett. (1)

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110(4), 046807 (2013).
[Crossref] [PubMed]

Other (2)

C. Haffner, W. Heni, Y. Fedoryshyn, D. L. Elder, A. Melikyan, B. Baeuerle, J. Niegemann, A. Emboras, A. Josten, F. Ducry, M. Kohl, L. R. Dalton, D. Hillerkuss, C. Hafner, and J. Leuthold, “High-speed plasmonic Mach–Zehnder modulator in a waveguide,” in Eur. Conf. Opt. Com. (ECOC, 2014), paper PD.2.6.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental set up and MDM focusing device. a) A modified inverted microscope with a top excitation objective and a fiber coupled 780 nm laser. Laser light is focused from above, impinges on the device, and out-coupled light is collected from below and sent to a CCD camera. b) Side view: A focused free-space excitation laser grating couples to an MDM gap plasmon, propagates through an SiO2 support structure, under 7 Au bridges, through the MDM lens, and converts to a surface plasmon at the bottom-Au/air interface before out-coupling to light at the five out-coupler slits. Light is collected from below through the glass substrate. The dashed black line represents the suspended bridges. c) Top View: The red dashed lines show the propagation path of the GP in the MDM waveguide, changing to solid red as the GP converts to a SPP after the lens where it is focused onto the 2nd slit. The blue dashed lines show the 2.5 μm undercut of the SiO2 after release. Blue arrows point to the SiO2 and top Au edges of the lens. d) Scanning electron micrograph of the device imaged at an angle. Seen from lower left to upper right are the in-coupler grating, bridges, lens, and out-coupler region (before the out-coupler slits were cut). The partial view of the square border is for electrical isolation and is not used in this application. The inset shows a close up of the bridge ends, with the overlapping 2.5 μm radius circles depicting the isotropic wet etch undercut boundaries from end points. The top edge of this etching pattern forms the plano- face of the lens and is mildly scalloped with features at the λGP/15 scale.

Fig. 2
Fig. 2

Nanofabrication steps. (a) Top view schematic with a red dashed line between two central bridges showing the cross section depicted in side views (b) – (f). (b) MDM stack on glass substrate with PMMA on top. (c) Device structures are patterned into the PMMA positive resist with e-beam lithography. (d) Ar ion mill through the top Au and partially into the SiO2. (e) Wet release in buffered oxide etch (BOE 6:1) for 10 min to remove the SiO2 under the patterned areas followed by a CO2 critical-point dry resulting in a 2.5 μm SiO2 undercut. The horizontal dashed lines represent the suspended bridges. (f) Out-coupler slits are cut through the bottom Au and partially into the glass substrate with focused ion-beam milling.

Fig. 3
Fig. 3

Two-dimensional GP focusing. Left: Optical images (dark squares) of the out-coupled light sampled from five slits are superimposed over schematics of the device. The plasmon is focused on the second slit as it propagates over the slits, each separated by 5 μm. As the laser spot is shifted with respect to the in-coupler grating, the collimated GP shifts (vertical red dashed lines), under-filling different parts of the lens, resulting in tilted focused light. The laser is on the far right of the grating in (a), centered in (c), and to the far left in (e). Note that as the laser is shifted from center, the grating is under-filled, resulting in a narrower defocused GP and a less intense SPP at large angles. Shown in (c) are the distance from the vertex of the SiO2 lens to the second slit (11.7 μm), the 0.43 NA plano-convex lens, and a schematic of the propagating GP. (d) The radii of the SiO2 plano-convex and air meniscus lenses are shown. Red lines showing the solid angle of the focused SPP are guides for the eye. Far right: The black arrows in the vertical stack of images (a) - (e) point to the focused SPP on slit #2. Note that the focal point stays at the same point on the slit as the focus angle changes.

Fig. 4
Fig. 4

Gaussian fit (red line) of the intensity profile of the focused SPP showing a diffraction limited spot wih 0.9 μm full width half max (FWHM). The profile is along the second slit in the x direction, taken from the yellow box in the inset. Each data point is a summation along y of three pixels. The statistical uncertainty is smaller than the symbol diameter. No white light was used so the slit is not seen. The contrast and brightness of the image were adjusted for clarity.

Fig. 5
Fig. 5

Plots of the GP integrated intensity (left axis) and FWHM (right axis) from Gaussian fits of the out-coupled light from multiple-slit lensless devices. An example device schematic and superimposed image of out-coupled light is seen to the right of the plot. Intensity profiles were obtained from each slit, within the yellow rectangular box (example shown at the first slit), as described in Fig. 4. Left axis (log scale): Exponential fits (solid lines) of the data gives an average propagation length LSPP = 11.4 μm ± 0.4 μm. Note that the device depicted in red only has three out-coupler slits. Error bars are the standard deviations of the integrated area based on the Gaussian fits of the intensity profiles. Right axis: Linear fits of the data (solid lines) show how the GP beam widths change as they propagate and their level of collimation. Error bars are the standard deviations of the FWHM based on the Gaussian fits of the intensity profiles. Four devices were measured: 1) green: 7 bridges, 5 slits and an 11 μm wide grating; 2) red: 11 bridges, 3 slits and a 16 μm wide grating; 3) black: 11 bridges, 5 slits and a 16 μm wide grating; and 4) blue: 11 bridges, 5 slits and a 16 μm wide grating.

Metrics