Abstract

We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics

Daniely G. Silva, Poliane A. Teixeira, Lucas H. Gabrielli, Mateus A. F. C. Junqueira, and Danilo H. Spadoti
Opt. Express 25(19) 23517-23522 (2017)

Design method for broadband free-space electromagnetic cloak based on isotropic material for size reduction and enhanced invisibility

Yongjune Kim, Ilsung Seo, Il-Suek Koh, and Yongshik Lee
Opt. Express 24(20) 22708-22717 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  4. N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
    [Crossref] [PubMed]
  5. L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
    [Crossref] [PubMed]
  6. C. García-Meca, M. M. Tung, J. V. Galán, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Squeezing and expanding light without reflections via transformation optics,” Opt. Express 19(4), 3562–3575 (2011).
    [Crossref] [PubMed]
  7. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley & Sons, 2005).
  8. Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
    [Crossref] [PubMed]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  10. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
    [Crossref]
  11. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  13. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
    [Crossref]
  14. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [Crossref] [PubMed]
  15. N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
    [Crossref] [PubMed]
  16. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
    [Crossref] [PubMed]
  17. C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Full three-dimensional isotropic transformation media,” New J. Phys. 16(2), 023030 (2014).
    [Crossref]
  18. D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
    [Crossref] [PubMed]
  19. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
    [Crossref] [PubMed]
  20. D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
    [Crossref]
  21. A. F. Bower, Applied Mechanics of Solids (CRC, 2009).
  22. P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
    [Crossref]

2015 (1)

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

2014 (2)

C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Full three-dimensional isotropic transformation media,” New J. Phys. 16(2), 023030 (2014).
[Crossref]

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

2013 (2)

P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
[Crossref]

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[Crossref] [PubMed]

2012 (2)

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

2009 (4)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[Crossref] [PubMed]

2008 (1)

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

2007 (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Basov, D.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Church, K. H.

P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
[Crossref]

Cui, T. J.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dffenbaugh, P. I.

P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
[Crossref]

Driscoll, T.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Gabrielli, L. H.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Galán, J. V.

García-Meca, C.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Johnson, S. G.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, J.

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

Kim, K.

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Kundtz, N.

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[Crossref] [PubMed]

Landy, N.

Landy, N. I.

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[Crossref] [PubMed]

N. I. Landy and W. J. Padilla, “Guiding light with conformal transformations,” Opt. Express 17(17), 14872–14879 (2009).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Lim, D.

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

Lipson, M.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Liu, D.

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

Martí, J.

Martínez, A.

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ortuño, R.

Padilla, W. J.

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

Rodríguez-Fortuño, F. J.

Rumpf, R. C.

P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seo, I.

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

Shin, D.

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Smith, D. R.

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Tung, M. M.

Urzhumov, Y.

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

Y. Urzhumov, N. Landy, T. Driscoll, D. Basov, and D. R. Smith, “Thin low-loss dielectric coatings for free-space cloaking,” Opt. Lett. 38(10), 1606–1608 (2013).
[Crossref] [PubMed]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007).
[Crossref]

D. Shin, J. Kim, I. Seo, and K. Kim, “Quasi-conformal transformation optics with elasto-electromagnetic metamaterials: Design algorithm,” Appl. Phys. Lett. 107(2), 021908 (2015).
[Crossref]

IEEE Trans. Comp., Packag. Manuf. Technol. (1)

P. I. Dffenbaugh, R. C. Rumpf, and K. H. Church, “Broadband microwave frequency characterization of 3D printed materials,” IEEE Trans. Comp., Packag. Manuf. Technol. 3(12), 2147–2155 (2013).
[Crossref]

Nat. Commun. (3)

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3, 1213 (2012).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1(3), 21 (2010).
[Crossref] [PubMed]

L. H. Gabrielli, D. Liu, S. G. Johnson, and M. Lipson, “On-chip transformation optics for multimode waveguide bends,” Nat. Commun. 3, 1217 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009).
[Crossref]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

New J. Phys. (1)

C. García-Meca, R. Ortuño, J. Martí, and A. Martínez, “Full three-dimensional isotropic transformation media,” New J. Phys. 16(2), 023030 (2014).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

N. I. Landy, N. Kundtz, and D. R. Smith, “Designing three-dimensional transformation optical media using quasiconformal coordinate transformations,” Phys. Rev. Lett. 105(19), 193902 (2010).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

D. Shin, Y. Urzhumov, D. Lim, K. Kim, and D. R. Smith, “A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials,” Sci. Rep. 4, 4084 (2014).
[Crossref] [PubMed]

Science (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (2)

C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley & Sons, 2005).

A. F. Bower, Applied Mechanics of Solids (CRC, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a-b) Deformation of a auxetic (PR = –0.99) unit-cell (a) Isotropic deformation with nearly free boundary conditions and (b) anisotropic deformation with sliding boundary conditions at the lateral and the top surfaces. (c) A beam path (red dotted arrow) through a unit-cell deformed from initially isotropic one (dotted cube). (d) The degree of anisotropy in the lateral and longitudinal components of half-cut 3D cylindrical cloak.
Fig. 2
Fig. 2 Wave simulations of the initial and the deformed TO media. (a) A TO medium of two blocks. (b) Wave propagation through the free space medium (a). (c) 3 dimensionally deformed TO medium from the initial medium. (d) Incident wave decays in the deformed TO medium with permittivity one.
Fig. 3
Fig. 3 Simulation results of STO wave bender. (a) Isotropic permittivity distribution calculated from the Jacobian matrix. (b) Wave propagation in the designed STO wave bender. The phase-aligned wave flows along the deformed geometry without any reflections or interferences. (c-e) The degree of anisotropy (c) nx: nz, (d) ny: nz, and (e) nx: ny calculated from the Jacobian matrix.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε = Gε G T | G | .
G ij =[ a 1 0 0 0 a 2 0 0 0 a 3 ].
ε =ε[ a 1 2 0 0 0 a 2 2 0 0 0 a 3 2 ]/J, μ =μ[ a 1 2 0 0 0 a 2 2 0 0 0 a 3 2 ]/J, n = μ ε .
ε eff = ( n ) 2 = J 2/3 .
ε eff = ε meta =f× ε d +(1f)

Metrics