Abstract

A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection

Dexin Wu, Xiaoxiao Xue, ShanGyuan Li, Xiaoping Zheng, Xuedi Xiao, Yu Zha, and Bingkun Zhou
Opt. Express 25(13) 14516-14523 (2017)

Photonic generation of a phase-coded microwave signal based on a single dual-drive Mach–Zehnder modulator

Zhenzhou Tang, Tingting Zhang, Fangzheng Zhang, and Shilong Pan
Opt. Lett. 38(24) 5365-5368 (2013)

Photonic microwave waveform generation based on phase modulation and tunable dispersion

Yongsheng Gao, Aijun Wen, Hanxiao Zheng, Dong Liang, and Lin Lin
Opt. Express 24(12) 12524-12533 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).
  2. G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
    [Crossref]
  3. R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).
  4. S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
    [Crossref]
  5. R. C. Daniels and R. W. Heath., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine 2(3), 41–50 (2007).
    [Crossref]
  6. X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
    [Crossref]
  7. H. J. Song and T. Nagatsuma, ““Present and future of terahertz communications” IEEE Trans. THz Sci,” Technol. 1(1), 256–263 (2011).
  8. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
    [Crossref]
  9. A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  10. F. Zhang, X. Ge, S. Pan, and J. Yao, “Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping,” Opt. Lett. 38(20), 4256–4259 (2013).
    [Crossref] [PubMed]
  11. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  12. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett. 38(8), 1361–1363 (2013).
    [Crossref] [PubMed]
  13. H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
    [Crossref]
  14. Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
    [Crossref]
  15. S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
    [Crossref] [PubMed]
  16. Y. Chen, A. Wen, Y. Chen, and X. Wu, “Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range,” Opt. Express 22(13), 15618–15625 (2014).
    [Crossref] [PubMed]
  17. P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).
  18. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
    [Crossref]
  19. H. B. Voelcker, “Toward a unified theory of modulation part I: phase-envelope relationships,” Proc. IEEE 54(3), 340–353 (1966).
    [Crossref]

2014 (3)

2013 (2)

2012 (1)

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

2011 (4)

H. J. Song and T. Nagatsuma, ““Present and future of terahertz communications” IEEE Trans. THz Sci,” Technol. 1(1), 256–263 (2011).

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

2008 (2)

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol. 26(9), 1032–1045 (2008).
[Crossref]

2007 (1)

R. C. Daniels and R. W. Heath., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine 2(3), 41–50 (2007).
[Crossref]

2003 (1)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

1982 (1)

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[Crossref]

1966 (1)

H. B. Voelcker, “Toward a unified theory of modulation part I: phase-envelope relationships,” Proc. IEEE 54(3), 340–353 (1966).
[Crossref]

Chen, Y.

Chi, H.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Chraplyvy, A. R.

Daniels, R. C.

R. C. Daniels and R. W. Heath., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine 2(3), 41–50 (2007).
[Crossref]

Fang, G. Y.

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Gao, X.

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Ge, X.

Gnauck, A. H.

Gu, S. M.

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Heath, R. W.

R. C. Daniels and R. W. Heath., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine 2(3), 41–50 (2007).
[Crossref]

Holloway, R. F.

R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).

Houshmand, B.

R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).

Huang, D.

P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Jiang, H. Y.

Li, C.

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Li, F.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Li, M.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Li, T.

Li, W.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, X.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Li, Z.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Liu, D.

P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).

Liu, S.

Lu, P.

P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).

Luo, B.

Nagatsuma, T.

H. J. Song and T. Nagatsuma, ““Present and future of terahertz communications” IEEE Trans. THz Sci,” Technol. 1(1), 256–263 (2011).

Pan, S.

Pan, W.

Roll, R.

R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).

Song, H. J.

H. J. Song and T. Nagatsuma, ““Present and future of terahertz communications” IEEE Trans. THz Sci,” Technol. 1(1), 256–263 (2011).

Sun, J.

P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).

Sun, Z. Y.

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

Tkach, R. W.

Ungerboeck, G.

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[Crossref]

Voelcker, H. B.

H. B. Voelcker, “Toward a unified theory of modulation part I: phase-envelope relationships,” Proc. IEEE 54(3), 340–353 (1966).
[Crossref]

Weedon, W. H.

R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).

Wei, Z.

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Wen, A.

Wu, X.

Xiao, J.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Xu, Y.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Yan, L. S.

Yao, J.

F. Zhang, X. Ge, S. Pan, and J. Yao, “Photonic generation of pulsed microwave signals with tunable frequency and phase based on spectral-shaping and frequency-to-time mapping,” Opt. Lett. 38(20), 4256–4259 (2013).
[Crossref] [PubMed]

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Yao, J. P.

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Ye, J.

Yu, J.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Zhang, F.

Zhang, J.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Zhang, X.

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

Zhang, Z.

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

Zhu, D.

Zou, X.

IEEE Microw. Wirel. Compon. Lett. (2)

H. Chi and J. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett. 18(5), 371–373 (2008).
[Crossref]

Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tenability using a polarization-maintaining fiber Bragg grating,” IEEE Microw. Wirel. Compon. Lett. 21(12), 694–696 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tenability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

X. Li, J. Yu, J. Zhang, F. Li, Y. Xu, Z. Zhang, and J. Xiao, “Fiber-wireless fiber link for 100 Gb/s PDM-QPSK signal transmission at W-band,” IEEE Photonics Technol. Lett. 26(18), 1825–1828 (2014).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

IEEE Trans. Inf. Theory (1)

G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory 28(1), 55–67 (1982).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. M. Gu, C. Li, X. Gao, Z. Y. Sun, and G. Y. Fang, “Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening,” IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012).
[Crossref]

IEEE Vehicular Technology Magazine (1)

R. C. Daniels and R. W. Heath., “60 GHz wireless communications: emerging requirements and design recommendations,” IEEE Vehicular Technology Magazine 2(3), 41–50 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. IEEE (1)

H. B. Voelcker, “Toward a unified theory of modulation part I: phase-envelope relationships,” Proc. IEEE 54(3), 340–353 (1966).
[Crossref]

Technol. (1)

H. J. Song and T. Nagatsuma, ““Present and future of terahertz communications” IEEE Trans. THz Sci,” Technol. 1(1), 256–263 (2011).

Other (3)

R. F. Holloway, W. H. Weedon, B. Houshmand, and R. Roll, “Next generation W-band radar testbed,” Radar Conference, 65–71 (2007).

P. Lu, D. Liu, D. Huang, and J. Sun, “Study of temperature stability for fiber-optic Mach-Zehnder interferometer filter,” in Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT 2002), 1087–1089 (2002).

D. K. Barton, Radar System Analysis and Modeling (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed phase-coded microwave signal generator. LD: laser diode, PC: polarization controller, PBS: polarization beam splitter, PBC: polarization beam combiner, MZM: Mach-Zehnder modulator, BPD: balanced photo-detector.
Fig. 2
Fig. 2 Measured optical spectra of (a) the carrier-suppressed signal (b) the BPSK signal and (c) the output signal from PBS2. Inset of (b) is the eye diagram of the 2 Gb/s optical BPSK signal.
Fig. 3
Fig. 3 (a) Measured waveform of the generated 20-GHz phase-coded microwave signal, (b) zoom-in view of the waveform for a duration of 6.5 ns, (c) the recovered phase and (d) the autocorrelation of the 6.5 ns waveform.
Fig. 4
Fig. 4 Schematic diagram of the one-dimension distance measurement system. EA: electrical amplifier.
Fig. 5
Fig. 5 Measured waveforms of the transmitted (before the amplifier) and received signals in 24.5 ns.
Fig. 6
Fig. 6 The correlations between the 13-bit Barker coded waveform and the transmitted/received waveform.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E X =Aexp[j2π( f o f)t]+Aexp[j2π( f o +f)t]
E Y =Bexp[ j2π f o t+s(t) ]
E 1,2 = 2 ( E X ± E Y )/2
I 1,2 (t)= E 1,2 E 1,2 * = 2 { 2 A 2 + B 2 +2 A 2 cos(4πft)±4ABcos[2πft+s(t)] }
I out (t)= I 1 (t) I 2 (t)=4ABcos[2πft+s(t)]

Metrics