Abstract

A plasmonic-photonic hybrid system with efficient coupling of light from a fiber-coupled microspherical cavity to localized surface plasmon (LSP) modes of a gold-coated tip was proposed, which was composed of a fiber-coupled microspherical cavity and a pseudoisocyanine (PIC)-attached gold tip. To prove efficient excitation of LSP at the gold-coated tip, we experimentally demonstrated two-photon excited fluorescence from the PIC-attached gold-coated tip via a fiber-coupled microspherical cavity under a weak continuous wave excitation condition. This hybrid system could focus the incident light with coupling efficiency of around 64% into a nanoscale domain of the metal tip with an effective area of a 79-nm circle.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation

Fang Ren, Hideaki Takashima, Yoshito Tanaka, Hideki Fujiwara, and Keiji Sasaki
Opt. Express 21(23) 27759-27769 (2013)

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure

Ye Luo, Maysamreza Chamanzar, and Ali Adibi
Opt. Express 21(2) 1898-1910 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
    [Crossref] [PubMed]
  3. S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002).
    [Crossref]
  4. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
    [Crossref] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  7. F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
    [Crossref]
  8. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  9. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
    [Crossref]
  10. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
    [Crossref] [PubMed]
  11. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [Crossref]
  12. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).
  13. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
    [Crossref] [PubMed]
  14. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
    [Crossref]
  15. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
    [Crossref] [PubMed]
  16. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
    [Crossref] [PubMed]
  17. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [Crossref] [PubMed]
  18. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
    [Crossref] [PubMed]
  19. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
    [Crossref]
  20. H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
    [Crossref]
  21. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  22. F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
    [Crossref] [PubMed]
  23. F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
    [Crossref]
  24. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
    [Crossref]
  25. D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
    [Crossref]
  26. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
    [Crossref] [PubMed]
  27. K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
    [Crossref]
  28. I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B 101(27), 5263–5276 (1997).
    [Crossref]
  29. T. J. A. Kippenberg, “Nonlinear optics in ultra-high Q whispering-gallery optical microcavities,” California Institute of Technology Pasadena, California, 48–67(2004).
  30. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
    [Crossref]

2014 (1)

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

2013 (1)

2012 (4)

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20(1), 220–227 (2012).
[Crossref] [PubMed]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

2011 (1)

2010 (1)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

2009 (1)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

2008 (2)

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

2007 (1)

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

2006 (5)

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[Crossref] [PubMed]

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

2005 (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

2003 (3)

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (2)

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002).
[Crossref]

1999 (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

1997 (3)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B 101(27), 5263–5276 (1997).
[Crossref]

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Adibi, A.

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Barbara, P. F.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Bassim, N. D.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Bauer, C. A.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Belfield, K. D.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Bezares, F. J.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Bondar, M. B.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Caldwell, J. D.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Chamanzar, M.

Chauvat, D.

Chen, Y.-L.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

de Wilde, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Enoch, S.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Feygelson, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Fujiwara, H.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
[Crossref] [PubMed]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Glembocki, O.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Gong, Q.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Gorman, C. B.

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B 101(27), 5263–5276 (1997).
[Crossref]

Harmsen, R. H.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Hernandez, F.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Higgins, D. A.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

Hosten, C.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jacques, V.

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Kasica, R.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Kerimo, J.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Kitajima, K.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

Kuipers, L.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Le Xuan, L.

Li, B.-B.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Li, Y.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Liu, Y.-C.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Mangel, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Marder, S. R.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Masuhara, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[Crossref] [PubMed]

Meyer-Friedrichsen, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Perry, J. W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Pond, S. J. K.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Prangsma, J. C.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Przhonska, O.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Ren, F.

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
[Crossref] [PubMed]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

Rendell, R. W.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Roch, J.-F.

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Sandtke, M.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Sasaki, K.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
[Crossref] [PubMed]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Segerink, F. B.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

Shirey, L.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Slablab, A.

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Stellacci, F.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Takahashi, M.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

Takahashi, S.

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002).
[Crossref]

Takashima, H.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
[Crossref] [PubMed]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

Takeuchi, S.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

Tanaka, Y.

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21(23), 27759–27769 (2013).
[Crossref] [PubMed]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[Crossref] [PubMed]

Touzov, I.

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B 101(27), 5263–5276 (1997).
[Crossref]

Ukaegbu, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

van Nieuwstadt, J. A.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

Vanden Bout, D. A.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Wenseleers, W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

Yakar, A. B.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Yao, S.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[Crossref] [PubMed]

Zayats, A. V.

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002).
[Crossref]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

Zielinski, M.

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic materials,” Acc. Chem. Res. 30(5), 204–212 (1997).
[Crossref]

Appl. Phys. Lett. (3)

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett. 90(10), 101103 (2007).
[Crossref]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89(12), 121107 (2006).
[Crossref]

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett. 80(19), 3479–3481 (2002).
[Crossref]

Chem. Phys. (1)

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys. 320(2-3), 118–124 (2006).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B 106(27), 6853–6863 (2002).
[Crossref]

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B 101(27), 5263–5276 (1997).
[Crossref]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. B. Yakar, “Tunable two-photon luminescence in single gold nanowires fabricated by lithographically patterned nanowire electrodeposition,” J. Phys. Chem. C 112, 12721–12727 (2008).

Nano Lett. (2)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6(9), 2060–2065 (2006).
[Crossref] [PubMed]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Nature (3)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (2)

Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A 85(3), 031805 (2012).
[Crossref]

H. Takashima, K. Kitajima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Efficient optical coupling into a single plasmonic nanostructure using a fiber-coupler microspherical cavity,” Phys. Rev. A 89(2), 021801 (2014).
[Crossref]

Phys. Rev. Lett. (4)

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97(14), 146102 (2006).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[Crossref]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90(1), 013903 (2003).
[Crossref] [PubMed]

Plasmonics (1)

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics 7(1), 143–150 (2012).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA 102(44), 15752–15756 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE 8463, 846305 (2012).
[Crossref]

Sens. Actuators B Chem. (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Other (1)

T. J. A. Kippenberg, “Nonlinear optics in ultra-high Q whispering-gallery optical microcavities,” California Institute of Technology Pasadena, California, 48–67(2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) FE-SEM image of a gold-coated tip and (b) surface plasmon resonance scattering spectrum of a gold-coated tip.

Fig. 2
Fig. 2

(a) Schematic of experimental setup. FG: Function generator; LD: Laser diode; HWP: Half wave plate; PBS: Polarization beam splitter; QWP: Quarter wave plate; FC: Fiber collimator; FFC: Fused fiber coupler (95:5); PD: Photodiode; DM: Dichroic mirror; Inset: SEM images of a microspherical cavity and a tapered fiber. (b) Schematic of optical coupling into a metal nanostructure using a fiber-coupled microspherical cavity.

Fig. 3
Fig. 3

Excitation polarization dependence of TPF from the apex of a PIC-attached gold tip under a femtosecond pulsed laser excitation (excitation peak power density: ~60 MW/cm2) in free space. The fitting solid curve shows a cos4(θ) function. Inset: TPF images of the tip with parallel and perpendicular excitation polarizations, respectively. Image size is 20 × 20 μm2. In the images, circles and double-arrows indicate the tip apex region and the polarization of the excitation light.

Fig. 4
Fig. 4

(a) Transmittance spectra from the end of a tapered fiber at five different gap distances between the microspherical cavity and the tapered fiber. d in (a) shows the distance between the tapered fiber and microspherical cavity, and the zero point corresponds to the point where the tapered fiber was in contact with the surface of microspherical cavity. (b) Transmittance and (c) linewidth on resonance as a function of the distance between the tapered fiber and microspherical cavity.

Fig. 5
Fig. 5

(a) The transmittance spectra from the end of the tapered fiber and (b) emission spectra from the apex of the PIC-attached gold tip with five different distances between the tip and the surface of microspherical cavity. d in (a) and (b) indicates the distance between the tip and microspherical cavity, and the zero point corresponds to the point in which the tip was in contact with the surface of microspherical cavity. (c) Transmittance, (d) linewidth of the resonant dip, and (e) emission intensity at the apex of the PIC-attached gold tip as a function of the distance between the PIC-attached gold tip and the microspherical cavity surface. The tapered fiber was in contacted with the surface of microspherical cavity. (f) Numerical result of the cross-section of WGM.

Fig. 6
Fig. 6

Log-log plot of the incident power dependence of the TPF intensity. The slope value is about 2.2 (blue solid line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T= ( 1K 1+K ) 2 ,
K= κ ex κ 0 + κ tip .
κ tip = c l c × σ A .

Metrics