Abstract

We have developed compact Si Mach–Zehnder modulators that are assisted by wideband low-dispersion slow light in lattice-shifted photonic crystal waveguides. We have also developed Si triangular-shaped coupled-microring multiplexers that allow a box-like spectrum, a wide free spectral range, and an efficient thermal tuning. In this study, we integrated three sets of these devices in a small footprint of 2.0 × 0.7 mm2 and achieved their 25 Gbps/ch operation as a wavelength division multiplexing transmitter. Moreover, we demonstrated hitless wavelength tuning using thermo-optic switches loaded in the bus waveguide.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical cross-connect circuit using hitless wavelength selective switch

Yuta Goebuchi, Masahiko Hisada, Tomoyuki Kato, and Yasuo Kokubun
Opt. Express 16(2) 535-548 (2008)

Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes

Yosuke Hinakura, Yosuke Terada, Hiroyuki Arai, and Toshihiko Baba
Opt. Express 26(9) 11538-11545 (2018)

Full C-band Si photonic crystal waveguide modulator

Yosuke Terada, Keisuke Kondo, Ryotaro Abe, and Toshihiko Baba
Opt. Lett. 42(24) 5110-5112 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [Crossref] [PubMed]
  2. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research Topical Meeting, 2010 OSA Technical Digest Series (OSA, 2010), paper PDIW5.
    [Crossref]
  3. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  4. Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).
  5. H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
    [Crossref]
  6. H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33(2), 304–310 (2014).
    [Crossref]
  7. H. Ito, Y. Terada, N. Ishikura, and T. Baba, “WDM transmitter using Si photonic crystal optical modulators,” in Conference on Laser and Electro-Optics, 2015 OSA Technical Digest Series (OSA, 2015), paper SW3N.4.
    [Crossref]
  8. S. Kinugasa, N. Ishikura, H. Ito, N. Yazawa, and T. Baba, “On-chip integration of optical correlator based on slow-light devices,” Opt. Express 23(16), 20767–20773 (2015).
    [Crossref]
  9. R. Chatterjee, M. Yu, A. Stein, D.-L. Kwong, L. C. Kimerling, and C. W. Wong, “Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks,” Opt. Express 18(3), 3045–3058 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33(2), 304–310 (2014).
[Crossref]

Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).

2013 (1)

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

2011 (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

2010 (1)

2006 (1)

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Baba, T.

S. Kinugasa, N. Ishikura, H. Ito, N. Yazawa, and T. Baba, “On-chip integration of optical correlator based on slow-light devices,” Opt. Express 23(16), 20767–20773 (2015).
[Crossref]

H. Ito, N. Ishikura, and T. Baba, “Triangular-shaped coupled microrings for robust wavelength multi-/demultiplexing in Si photonics,” J. Lightwave Technol. 33(2), 304–310 (2014).
[Crossref]

Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

Chatterjee, R.

Hashimoto, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

Ishikura, N.

Ito, H.

Kimerling, L. C.

Kinugasa, S.

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kwong, D.-L.

Lipson, M.

Nguyen, H. C.

Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

Otsuka, S.

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

Schmidt, B.

Shakya, J.

Stein, A.

Terada, Y.

Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).

Wong, C. W.

Xu, Q.

Yazawa, N.

S. Kinugasa, N. Ishikura, H. Ito, N. Yazawa, and T. Baba, “On-chip integration of optical correlator based on slow-light devices,” Opt. Express 23(16), 20767–20773 (2015).
[Crossref]

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

Yu, M.

Front. Phys. (1)

Y. Terada, H. Ito, H. C. Nguyen, and T. Baba, “Theoretical and experimental investigation of low-voltage and low-loss 25-Gbps Si photonic crystal slow light Mach-Zehnder modulators with interleaved p/n junction,” Front. Phys. 2(61), 1–9 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

H. C. Nguyen, N. Yazawa, S. Hashimoto, S. Otsuka, and T. Baba, “Sub-100 μm photonic crystal Si optical modulators: spectral, athermal and high-speed performance,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3400811 (2013).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Opt. Express (3)

Other (2)

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research Topical Meeting, 2010 OSA Technical Digest Series (OSA, 2010), paper PDIW5.
[Crossref]

H. Ito, Y. Terada, N. Ishikura, and T. Baba, “WDM transmitter using Si photonic crystal optical modulators,” in Conference on Laser and Electro-Optics, 2015 OSA Technical Digest Series (OSA, 2015), paper SW3N.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 WDX transmitter. (a) schematic. (b) Top view of fabricated device (L = 200 μm).
Fig. 2
Fig. 2 Through and drop spectra measured for triangular-shaped microring without thermal tuning.
Fig. 3
Fig. 3 2 × 2 MMI coupler. (a) Design. (b) Fabricated multi-stage device. (c) Excess loss evaluated using the device in (b). (d) Branching ratio measured for single device.
Fig. 4
Fig. 4 Observed spectrum. (a) slow light bandwidth of LSPCW. MUX spectra (b) without thermal tuning and (c) with thermal tuning. The number in the figure corresponds to the total heating power.
Fig. 5
Fig. 5 Thermal-tuned MUX spectra and observed 25 Gbps eye patterns.
Fig. 6
Fig. 6 Hitless wavelength tuning. (a) Schematic operation. (b) Measured MUX spectra and tuning of MUX #1. (c) 25 Gbps eye patterns. (d) Switching characteristics of SW #1. (e) Eye patterns generated by Modulator #2 and observed at Monitor #1 and the WDM port.

Metrics