Abstract

We demonstrate a harmonic mode-locking Erbium-doped fiber laser which is cooperatively mode-locked by nonlinear polarization evolution (NPE) and semiconductor saturable absorber mirror (SESAM). Via effective dispersion and nonlinearity optimization, 8th harmonic at a repetition rate of 666.7 MHz is obtained. The output pulses has a full spectrum width at half maximum (FWHM) of 181 nm and duration of 218 fs. The pulses are compressed to 91 fs by external chirp compensation. The average power of the direct output pulse at an available pump power of 1.5 W is 136 mW, which exhibits a single-pulse energy of 0.2 nJ. The cavity super-mode suppression is up to 60 dB and the signal-to-noise ratio of the 8th harmonic is over 75 dB.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot–Sagnac filter

Ming Li, Xin Zou, Jian Wu, Jindan Shi, Jifang Qiu, and Xiaobin Hong
Appl. Opt. 54(29) 8800-8803 (2015)

All-normal-dispersion passive harmonic mode-locking 220  fs ytterbium fiber laser

Junli Wang, Xiangbao Bu, Rui Wang, Long Zhang, Jiangfeng Zhu, Hao Teng, Hainian Han, and Zhiyi Wei
Appl. Opt. 53(23) 5088-5091 (2014)

Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser

Caroline Lecaplain and Philippe Grelu
Opt. Express 21(9) 10897-10902 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  2. G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010).
    [Crossref] [PubMed]
  3. J. Rauschenberger, T. Fortier, D. Jones, J. Ye, and S. Cundiff, “Control of the frequency comb from a modelocked Erbium-doped fiber laser,” Opt. Express 10(24), 1404–1410 (2002).
    [Crossref] [PubMed]
  4. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  5. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
    [Crossref] [PubMed]
  6. J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
    [Crossref] [PubMed]
  7. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
    [Crossref]
  8. J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
    [Crossref]
  9. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9(1), 91–97 (1992).
    [Crossref]
  10. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
    [Crossref]
  11. Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
    [Crossref]
  12. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
    [Crossref] [PubMed]
  13. P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
    [Crossref]
  14. C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
    [Crossref] [PubMed]
  15. J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative dolitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
    [Crossref]
  16. Z. X. Zhang, L. Wang, and Y. J. Wang, “Sub-100 fs and passive harmonic mode-locking of dispersion-managed dissipative fiber laser with carbon nanotubes,” J. Lightwave Technol. 31(23), 3719–3725 (2013).
    [Crossref]
  17. B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
    [Crossref] [PubMed]
  18. Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12(16), 3872–3877 (2004).
    [Crossref] [PubMed]
  19. C. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber,” Opt. Mater. Express 2(6), 884–890 (2012).
    [Crossref]
  20. C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D. I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37(11), 1862–1864 (2012).
    [Crossref] [PubMed]
  21. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
    [Crossref]
  22. J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
    [Crossref]
  23. K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
    [Crossref] [PubMed]
  24. S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
    [Crossref] [PubMed]
  25. X. Li, W. Zou, and J. Chen, “41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate,” Opt. Lett. 39(6), 1553–1556 (2014).
    [Crossref] [PubMed]
  26. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [Crossref] [PubMed]
  27. X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
    [Crossref]
  28. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 µm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [Crossref] [PubMed]
  29. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  30. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
    [Crossref]
  31. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
    [Crossref] [PubMed]
  32. H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett. 37(5), 954–956 (2012).
    [Crossref] [PubMed]

2015 (1)

X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
[Crossref]

2014 (3)

2013 (3)

2012 (4)

2010 (2)

2009 (1)

2008 (2)

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
[Crossref] [PubMed]

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

2007 (4)

2006 (1)

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (2)

1998 (3)

B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
[Crossref] [PubMed]

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

1997 (1)

1993 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

1992 (1)

Abedin, K. S.

Abramski, K. M.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
[Crossref]

Amrani, F.

Arif, R.

Bergman, K.

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
[Crossref] [PubMed]

Bouma, B. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Chen, J.

Chen, J. P.

X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
[Crossref]

Choi, S. Y.

Chu, S. W.

Collings, B.

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Collings, B. C.

Cundiff, S.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Deng, Y.

Dmitriy, P.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

Fortier, T.

Fujimoto, J. G.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Gopinath, J. T.

Gordon, J. P.

Gray, S.

Grein, M. E.

Grelu, P.

Grudinin, A. B.

A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14(1), 144–154 (1997).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Haboucha, A.

Haus, H. A.

Ippen, E. P.

Jiang, L. A.

Jones, D.

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Jun, C. S.

Kim, B. Y.

Knox, W.

Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12(16), 3872–3877 (2004).
[Crossref] [PubMed]

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Knox, W. H.

Kobayashi, Y.

Koch, M.

Komarov, A.

Kutz, J. N.

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

Leblond, H.

Lecaplain, C.

Li, S.

Li, X.

Lin, C. Y.

Liu, T. M.

Lu, F.

Luo, S.

Luo, S. Y.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Mansuripur, M.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

McFerran, J. J.

Moloney, J. V.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

Mou, C.

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Nenadovic, L.

Newbury, N. R.

Nie, Y. Y.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Peng, J.

Peyghambarian, N.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

Polynkin, A.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

Polynkin, P.

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

Rauschenberger, J.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

Rotermund, F.

Rozhin, A.

Salhi, M.

Sanchez, F.

Sang, M. H.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Schlager, J. B.

Shen, Q.

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
[Crossref]

Sun, C. K.

Swann, W. C.

Tang, D. Y.

Tearney, G. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

Torizuka, K.

Tsai, H. J.

Tsia, K. K.

Turitsyn, S.

Valley, G. C.

Wang, A.

Wang, L.

Wang, Y. J.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Wicks, G.

Wong, K. K. Y.

Wu, G.

Xia, Y. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Xu, J.

Yang, G.

X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
[Crossref]

Yang, H.

Yang, X. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Ye, J.

Ye, Z. Q.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Yeom, D. I.

Yoshitomi, D.

Zhan, L.

J. Peng, L. Zhan, S. Luo, and Q. Shen, “Passive harmonic mode-locking of dissipative dolitons in a normal-dispersion Er-doped fiber laser,” J. Lightwave Technol. 31(16), 3009–3014 (2013).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhang, C.

Zhang, Z.

Zhang, Z. X.

Z. X. Zhang, L. Wang, and Y. J. Wang, “Sub-100 fs and passive harmonic mode-locking of dispersion-managed dissipative fiber laser with carbon nanotubes,” J. Lightwave Technol. 31(23), 3719–3725 (2013).
[Crossref]

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Zhao, L. M.

Zhou, X.

Zou, W.

X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
[Crossref]

X. Li, W. Zou, and J. Chen, “41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate,” Opt. Lett. 39(6), 1553–1556 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz,” Appl. Phys. Lett. 100(16), 161109 (2012).
[Crossref]

Electron. Lett. (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic mode locking of a fibre soliton ring laser,” Electron. Lett. 29(21), 1860–1861 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

J. N. Kutz, B. Collings, K. Bergman, and W. Knox, “Stabilized pulse spacing in soliton lasers due to gain depletion and recovery,” IEEE J. Quantum Electron. 34(9), 1749–1757 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Dmitriy, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18(7), 853–855 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Li, W. Zou, G. Yang, and J. P. Chen, “Direct generation of 148 nm and 44.6 fs pulses in an Erbium-doped fiber laser,” IEEE Photonics Technol. Lett. 27(1), 93–96 (2015).
[Crossref]

J. Biomed. Opt. (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical Coherence Tomographic Imaging of Human Tissue at 1.55 μm and 1.81 μm Using Er- and Tm-Doped Fiber Sources,” J. Biomed. Opt. 3(1), 76–79 (1998).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (3)

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5(5), 364–366 (2008).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, and K. M. Abramski, “Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber,” Laser Phys. Lett. 11(5), 055102 (2014).
[Crossref]

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, “Passive harmonically mode-locked erbium-doped fiber laser with scalable repetition rate up to 1.2 GHz,” Laser Phys. Lett. 4(8), 592–596 (2007).
[Crossref]

Nat. Photonics (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Opt. Express (8)

J. Rauschenberger, T. Fortier, D. Jones, J. Ye, and S. Cundiff, “Control of the frequency comb from a modelocked Erbium-doped fiber laser,” Opt. Express 10(24), 1404–1410 (2002).
[Crossref] [PubMed]

S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, and H. J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
[Crossref] [PubMed]

Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12(16), 3872–3877 (2004).
[Crossref] [PubMed]

C. Lecaplain and P. Grelu, “Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser,” Opt. Express 21(9), 10897–10902 (2013).
[Crossref] [PubMed]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 µm with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[Crossref] [PubMed]

X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, “Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator,” Opt. Express 16(10), 7055–7059 (2008).
[Crossref] [PubMed]

G. Wu, S. Li, X. Li, and J. Chen, “18 wavelengths 83.9Gs/s optical sampling clock for photonic A/D converters,” Opt. Express 18(20), 21162–21168 (2010).
[Crossref] [PubMed]

Opt. Lett. (8)

H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett. 37(5), 954–956 (2012).
[Crossref] [PubMed]

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D. I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37(11), 1862–1864 (2012).
[Crossref] [PubMed]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34(14), 2120–2122 (2009).
[Crossref] [PubMed]

J. Xu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39(3), 622–625 (2014).
[Crossref] [PubMed]

X. Li, W. Zou, and J. Chen, “41.9 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate,” Opt. Lett. 39(6), 1553–1556 (2014).
[Crossref] [PubMed]

D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
[Crossref] [PubMed]

B. C. Collings, K. Bergman, and W. H. Knox, “Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser,” Opt. Lett. 23(2), 123–125 (1998).
[Crossref] [PubMed]

K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, “Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser,” Opt. Lett. 27(20), 1758–1760 (2002).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Phys. Rev. A (1)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Configuration of the hybrid HML fiber laser with bidirectional pumps. PBS, polarization beam splitter; PD-ISO, polarization-dependent isolator; λ/2, half waveplate; λ/4, quarter waveplate; L, aspheric lens; WDM, wavelength-division multiplexer.
Fig. 2
Fig. 2 Fundamental hybrid mode-locking characteristics. (a) Output pulse trains measured by an oscilloscope, (b) optical spectrum measured with 0.02 nm resolution, (c) RF spectrum of fundamental mode beat measured at 300 Hz resolution bandwidth, (d) RF spectrum of harmonics with 2 GHz span measured at 10 kHz resolution bandwidth, and (e) autocorrelation trace of the direct output pulse.
Fig. 3
Fig. 3 The average output power (black) and the harmonic order number (blue) for different bidirectional pump power.
Fig. 4
Fig. 4 The 8th hybrid HML characteristics. (a) Output pulse trains at 666.7 MHz repetition rate, (b) optical spectrum measured with 0.02 nm resolution, (c) RF spectrum measured at 300 Hz resolution bandwidth, and (d) RF spectrum with 10 GHz span at 10 kHz resolution bandwidth.
Fig. 5
Fig. 5 The autocorrelation trace of the direct output pulse (black solid curve) and its compressed pulse (blue solid curve) at the 8th harmonic mode-locking. The gray solid curve is the Fourier transform of spectrum. A Gaussian fit curve (red dotted curve) is superimposed. The zoomed-in view of the pulse’s top is shown in the inset.
Fig. 6
Fig. 6 The 4th hybrid HML characteristics. (a) Output pulse trains at 333.3 MHz repetition rate, (b) optical spectrum measured with 0.02 nm resolution, (c) RF spectrum measured at 300 Hz resolution bandwidth, (d) RF spectrum with 3 GHz span at 10 kHz resolution bandwidth.
Fig. 7
Fig. 7 The autocorrelation trace of the direct output pulse (black solid curve) and its compressed pulse (blue solid curve) at the 4th harmonic mode-locking. The gray solid curve is the Fourier transform of spectrum. A Gaussian fit curve (red dotted curve) is superimposed. The zoomed-in view of the pulse’s top is shown in the inset.

Tables (1)

Tables Icon

Table 1 Parameters of all fibers in the hybrid HML cavity with dispersion and nonlinearity optimization.

Metrics