Abstract

We propose and experimentally demonstrate a 4-port passive encoder for 4-bit Gray code on pure silicon platform. The operation principle for this device is the thermo-optic (TO) effect in silicon microring resonator (MRR) whose transmission spectrum could be shifted by injecting strong light power. Therefore, the output powers of both the through-port and drop-port of the MRR could be controllable and switchable. Two threshold powers are defined to decide the port output code of bit “0” or “1”. By combining two independent resonant wavelengths of two MRRs and adjusting their powers in a certain order, all-optical 4-bit Gray code generation has been successfully demonstrated. The proposed integrated device is competent in on-chip all-optical communication and optical interconnection systems with significant advantages, such as simple operation, compact size, economical fabrication process and great scalability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Energy-efficient on-chip optical diode based on the optomechanical effect

Huaqing Qiu, Jianji Dong, Li Liu, and Xinliang Zhang
Opt. Express 25(8) 8975-8985 (2017)

Low-power all-optical microwave filter with tunable central frequency and bandwidth based on cascaded opto-mechanical microring resonators

Li Liu, Zhi Chen, Xing Jin, Yue Yang, Zhihua Yu, Jingjing Zhang, Lijun Zhang, and Hong Wang
Opt. Express 25(15) 17329-17342 (2017)

Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator

Li Liu, Yue Yang, Zhihua Li, Xing Jin, Wenqin Mo, and Xing Liu
Opt. Express 25(2) 960-971 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [Crossref]
  2. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
    [Crossref] [PubMed]
  3. C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
    [Crossref] [PubMed]
  4. C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
    [PubMed]
  5. Y. Tian, L. Zhang, J. Ding, and L. Yang, “Demonstration of electro-optic half-adder using silicon photonic integrated circuits,” Opt. Express 22(6), 6958–6965 (2014).
    [Crossref] [PubMed]
  6. T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
    [Crossref] [PubMed]
  7. S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photonics Technol. Lett. 18(5), 703–705 (2006).
    [Crossref]
  8. L. Yang, J. Ding, Q. Chen, P. Zhou, F. Zhang, and L. Zhang, “Demonstration of a 3-bit optical digital-to-analog converter based on silicon microring resonators,” Opt. Lett. 39(19), 5736–5739 (2014).
    [Crossref] [PubMed]
  9. Y. Wang, X. Zhang, J. Dong, and D. Huang, “Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers,” Opt. Express 15(23), 15080–15085 (2007).
    [Crossref] [PubMed]
  10. C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
    [Crossref]
  11. G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, “Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Opt. 36(19), 4463–4472 (1997).
    [Crossref] [PubMed]
  12. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [Crossref] [PubMed]
  13. https://en.wikipedia.org/wiki/Gray_code
  14. R. M. Losee, “A Gray Code Based Ordering for Documents on Shelves: Classification for Browsing and Retrieval,” J. Am. Soc. Inf. Sci. 43(4), 312–322 (1992).
    [Crossref]
  15. Y. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19(9), 8539–8545 (2011).
    [Crossref] [PubMed]
  16. G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, “Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications,” Appl. Opt. 36(19), 4463–4472 (1997).
    [Crossref] [PubMed]
  17. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors,” Appl. Opt. 38(31), 6565–6573 (1999).
    [Crossref] [PubMed]
  18. Y. Zheng, D. J. Brady, M. E. Sullivan, and B. D. Guenther, “Fiber-optic localization by geometric space coding with a two-dimensional gray code,” Appl. Opt. 44(20), 4306–4314 (2005).
    [Crossref] [PubMed]
  19. H. Soto and A. Gutiérrez, “All-optical 2-to-4 level encoder based on cross polarization modulation in a semiconductor optical amplifier utilized to develop an all-optical 2 input digital multiplexer,” Opt. Express 14(20), 9000–9005 (2006).
    [Crossref] [PubMed]
  20. T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
    [Crossref]
  21. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  22. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  23. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [Crossref] [PubMed]
  24. L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
    [Crossref] [PubMed]
  25. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref] [PubMed]
  26. L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
    [Crossref] [PubMed]
  27. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  28. G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  29. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  30. M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
    [Crossref]
  31. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [Crossref] [PubMed]
  32. H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
    [Crossref]
  33. J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31(2), 313–321 (2013).
    [Crossref]
  34. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
    [Crossref] [PubMed]
  35. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005).
    [Crossref] [PubMed]
  36. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [Crossref] [PubMed]
  37. Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency,” Opt. Lett. 39(18), 5348–5350 (2014).
    [Crossref]
  38. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
    [Crossref] [PubMed]
  39. G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
    [Crossref] [PubMed]
  40. Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
    [Crossref] [PubMed]

2015 (1)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (5)

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31(2), 313–321 (2013).
[Crossref]

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

2012 (2)

2011 (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Y. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19(9), 8539–8545 (2011).
[Crossref] [PubMed]

2010 (2)

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

2009 (2)

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

2008 (1)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

2007 (5)

2006 (4)

2005 (4)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

1999 (2)

1997 (2)

1992 (1)

R. M. Losee, “A Gray Code Based Ordering for Documents on Shelves: Classification for Browsing and Retrieval,” J. Am. Soc. Inf. Sci. 43(4), 312–322 (1992).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Arakawa, Y.

Asano, T.

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Barclay, P.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Bowers, J. E.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Brady, D. J.

Carocci, M.

Chen, H.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Chen, Q.

Chu, T.

Corcoran, B.

Corini, S.

Cunningham, J. E.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Ding, J.

Ding, Y.

Docchio, F.

Dong, J.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Eggleton, B. J.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Fan, L.

Fang, A. W.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fathpour, S.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

Gao, D.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref] [PubMed]

Gong, Q.

C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
[PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Grillet, C.

Guenther, B. D.

Gutiérrez, A.

Hu, X.

C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
[PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Huang, D.

Huang, Q.

Huang, Z.

Ishida, S.

Itoh, K.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
[Crossref] [PubMed]

Jacome, L.

Jalali, B.

Jiang, X.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Khan, M. H.

Koch, B. R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Konishi, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
[Crossref] [PubMed]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

Krauss, T. F.

Krishnamoorthy, A. V.

Lazzari, S.

Lee, J. H.

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

Li, D.

Li, G.

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Lipson, M.

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Losee, R. M.

R. M. Losee, “A Gray Code Based Ordering for Documents on Shelves: Classification for Browsing and Retrieval,” J. Am. Soc. Inf. Sci. 43(4), 312–322 (1992).
[Crossref]

Lu, C.

C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
[PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Luo, X.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Luo, Y.

Maruta, A.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photonics Technol. Lett. 18(5), 703–705 (2006).
[Crossref]

Mekis, A.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Monat, C.

Moss, D. J.

Nishitani, T.

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
[Crossref] [PubMed]

Niu, B.

J. Wang, L. Fan, L. T. Varghese, H. Shen, Y. Xuan, B. Niu, and M. Qi, “A theoretical model for an optical diode built with nonlinear silicon microrings,” J. Lightwave Technol. 31(2), 313–321 (2013).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Noda, S.

O’Faolain, L.

Oda, S.

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photonics Technol. Lett. 18(5), 703–705 (2006).
[Crossref]

Oliver, J. H.

Ou, H.

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Pelusi, M.

Peucheret, C.

Poon, A. W.

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

Poulton, C.

Qi, M.

Raj, K.

Rodella, R.

Roelkens, G.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Sansoni, G.

Shen, H.

Shubin, I.

Song, B.-S.

Soto, H.

Srinivasan, K.

Su, Y.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Sullivan, M. E.

Thacker, H.

Tian, Y.

Uesugi, T.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Varghese, L. T.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Wang, J.

Wang, T.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Wang, Y.

Weiner, A. M.

L. Fan, L. T. Varghese, J. Wang, Y. Xuan, A. M. Weiner, and M. Qi, “Silicon optical diode with 40 dB nonreciprocal transmission,” Opt. Lett. 38(8), 1259–1261 (2013).
[Crossref] [PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

White, T. P.

Wu, J.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Wu, Y.

Xia, J.

Xiao, S.

Xu, M.

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

Xu, Q.

Xuan, Y.

Yamada, H.

Yang, H.

C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
[PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Yang, L.

Yao, J.

Yu, J.

Yvind, K.

Zeng, C.

Zhang, F.

Zhang, L.

Zhang, S.

Zhang, X.

Zhang, Y.

Zheng, A.

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref] [PubMed]

Zheng, X.

Zheng, Y.

Zhou, P.

Appl. Opt. (5)

Appl. Phys. Lett. (2)

C. Lu, X. Hu, H. Yang, and Q. Gong, “All-optical logic binary encoder based on asymmetric plasmonic nanogrooves,” Appl. Phys. Lett. 103(12), 121107 (2013).
[Crossref]

H. Chen, X. Luo, and A. W. Poon, “Cavity-enhanced photocurrent generation by 1.55 m wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator,” Appl. Phys. Lett. 95(17), 171111 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Nishitani, T. Konishi, and K. Itoh, “Resolution improvement of all-optical analog-to-digital conversion employing self-frequency shift and self-phase-modulation-induced spectral compression,” IEEE J. Sel. Top. Quantum Electron. 14(3), 724–732 (2008).
[Crossref]

IEEE Photonics J. (1)

M. Xu, J. Wu, T. Wang, X. Hu, X. Jiang, and Y. Su, “Push-pull optical nonreciprocal transmission in cascaded silicon microring resonators,” IEEE Photonics J. 5(1), 2200307 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Oda and A. Maruta, “All-optical digital-to-analog conversion using nonlinear optical loop mirrors,” IEEE Photonics Technol. Lett. 18(5), 703–705 (2006).
[Crossref]

J. Am. Soc. Inf. Sci. (1)

R. M. Losee, “A Gray Code Based Ordering for Documents on Shelves: Classification for Browsing and Retrieval,” J. Am. Soc. Inf. Sci. 43(4), 312–322 (1992).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. W. Fang, B. R. Koch, and J. E. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Nat. Photonics (2)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Opt. Express (14)

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[Crossref] [PubMed]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[Crossref] [PubMed]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15(10), 5976–5990 (2007).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15(22), 14467–14475 (2007).
[Crossref] [PubMed]

Y. Wang, X. Zhang, J. Dong, and D. Huang, “Simultaneous demonstration on all-optical digital encoder and comparator at 40 Gb/s with semiconductor optical amplifiers,” Opt. Express 15(23), 15080–15085 (2007).
[Crossref] [PubMed]

T. Nishitani, T. Konishi, and K. Itoh, “Optical coding scheme using optical interconnection for high sampling rate and high resolution photonic analog-to-digital conversion,” Opt. Express 15(24), 15812–15817 (2007).
[Crossref] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[Crossref] [PubMed]

Y. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express 19(9), 8539–8545 (2011).
[Crossref] [PubMed]

G. Li, J. Yao, H. Thacker, A. Mekis, X. Zheng, I. Shubin, Y. Luo, J. H. Lee, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects,” Opt. Express 20(11), 12035–12039 (2012).
[Crossref] [PubMed]

Y. Tian, L. Zhang, J. Ding, and L. Yang, “Demonstration of electro-optic half-adder using silicon photonic integrated circuits,” Opt. Express 22(6), 6958–6965 (2014).
[Crossref] [PubMed]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005).
[Crossref] [PubMed]

T. Uesugi, B.-S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006).
[Crossref] [PubMed]

H. Soto and A. Gutiérrez, “All-optical 2-to-4 level encoder based on cross polarization modulation in a semiconductor optical amplifier utilized to develop an all-optical 2 input digital multiplexer,” Opt. Express 14(20), 9000–9005 (2006).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. Rep. (3)

L. Liu, J. Dong, D. Gao, A. Zheng, and X. Zhang, “On-chip passive three-port circuit of all-optical ordered-route transmission,” Sci. Rep. 5, 10190 (2015).
[Crossref] [PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Chip-integrated ultrawide-band all-optical logic comparator in plasmonic circuits,” Sci. Rep. 4, 3869 (2014).
[PubMed]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Other (1)

https://en.wikipedia.org/wiki/Gray_code

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of the encoder for Gray code. (a) An add-drop MRR for encoding 2-bit Gray code. The resonant wavelength is λ1. (b) Principle diagram of the encoding rule of 2-bit Gray code. (c) 4-port device for encoding 4-bit Gray code. The resonant wavelength of R1 and R3 is λ1 which is separated from the resonance λ2 of R2.

Fig. 2
Fig. 2

(a) Micrograph of the 4-port device. (b) and (c) are the zoom in SEM images of R2 and grating coupler, respectively.

Fig. 3
Fig. 3

Measured transmission spectra of (a) Port 1, (b) Port 2, (c) Port 3 and (d) Port 4, respectively.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup. The components of the apparatus are labelled as follows: TLS, tunable laser source; PC, polarization controller; HP-EDFA, high-power erbium-doped fiber amplifier; OC, optical coupler; VOA, variable optical attenuator.

Fig. 5
Fig. 5

Measured transmittances of (a) Port 1 (the blue solid line) and Port 2 (the pink dotted line), (b) Port 3 (the red solid line) and Port 4 (the green dotted line), respectively.

Fig. 6
Fig. 6

Experimental encoding results of the Gray code when Pin(λ2) is fixed at (a) 0 mW, (b) 2.5 mW, (c) 8 mW and (d) 25 mW, respectively. Pin(λ1) of (a) and (c) orderly vary as 0 mW, 2.5 mW, 8 mW and 25 mW, respectively. On the contrary, Pin(λ1) of (b) and (d) orderly vary as 25 mW, 8 mW, 2.5 mW and 0 mW, respectively. The output powers of the dark green and light blue cylinders represent the threshold powers of P0 and P1, respectively.

Fig. 7
Fig. 7

The scalable topological structure of 2N-bit Gray code encoder. AWG: arrayed waveguide grating.

Tables (2)

Tables Icon

Table 1 Encoding rule for the 4-bit Gray code

Tables Icon

Table 2 Measured output powers of the four ports under different operation conditions

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δλ λ 0 n g δ n TO
δ n TO = Γ th k th R th (1 | T (λ) | 2 ) P in
Output bit={ 1 if P out > P 1 0 if P out < P 0
T * = T 0 T min T max T min

Metrics