Abstract

The fabrication of arrayed waveguide gratings (AWGs) using the femtosecond laser direct-write technique is investigated. We successfully demonstrate the fabrication of large planar waveguides that act as 2D free propagation zones. These slabs were found to have a highly uniform refractive index with a standard deviation of 1.97% relative to the total index contrast. The incorporation of low loss linear adiabatic tapers resulted in an increase of transmission by 90%. Strategies for manufacturing integrated laser written AWGs using continuous contouring to avoid lossy defects are discussed and demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser written arrayed waveguide gratings with integrated photonic lanterns

G. Douglass, F. Dreisow, S. Gross, and M. J. Withford
Opt. Express 26(2) 1497-1505 (2018)

Ultrafast laser inscription in chalcogenide glass: thermal versus athermal fabrication

Thomas Gretzinger, Simon Gross, Martin Ams, Alexander Arriola, and Michael J. Withford
Opt. Mater. Express 5(12) 2862-2877 (2015)

Waveguide inscription in Bismuth Germanate crystals using high repetition rate femtosecond lasers pulses

Christopher Miese, Simon Gross, Michael J. Withford, and Alexander Fuerbach
Opt. Mater. Express 5(2) 323-329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).
  2. B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
    [Crossref]
  3. N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
    [Crossref] [PubMed]
  4. T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).
  5. Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
    [Crossref]
  6. N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
    [Crossref]
  7. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Light. Technol. 21, 246–253 (2003).
    [Crossref]
  8. S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
    [Crossref]
  9. S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
    [Crossref] [PubMed]
  10. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
    [Crossref] [PubMed]
  11. I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
    [Crossref] [PubMed]
  12. N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
    [Crossref]
  13. I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
    [Crossref]
  14. W. Watanabe, Y. Note, and K. Itoh, “Fabrication of multimode interference waveguides in glass by use of a femtosecond laser,” Opt. Lett. 30, 2888–2890 (2005).
    [Crossref] [PubMed]
  15. L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
    [Crossref]
  16. A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
    [Crossref]
  17. S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
    [Crossref]
  18. F. Dreisow, Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany (personal communication, 2014).
  19. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [Crossref] [PubMed]
  20. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
    [Crossref] [PubMed]
  21. M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices : principles, design and applications,” Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [Crossref]
  22. T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).
  23. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14, 423–428 (1996).
    [Crossref]
  24. A. W. Snyder and J. Love, Optical Waveguide Theory, (Springer Science & Business Media, 2012), Chap. 24.
  25. C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
    [Crossref]
  26. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
    [Crossref] [PubMed]
  27. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
    [Crossref]
  28. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [Crossref]
  29. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
    [Crossref]
  30. P. L. Yuan and G. Duluth, “Optical device having low insertion loss,” US Patent5745618 (1998).
  31. R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
    [Crossref]
  32. D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
    [Crossref]
  33. J. Gehler and F. Knappe, “Crosstalk Reduction of Arrayed Waveguide Gratings by UV trimming of individual waveguides without H2-Loading,” in Optical Fiber Communication ConferenceOSA Technical Digest Series (Optical Society of America, 2000), paper WM9.
  34. M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
    [Crossref]

2014 (2)

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

2013 (2)

2012 (5)

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

2011 (2)

2010 (1)

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

2008 (3)

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[Crossref] [PubMed]

2006 (1)

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

2005 (1)

2004 (2)

S. Taccheo, G. D. Valle, R. Osellame, G. Cerullo, N. Chiodo, P. Laporta, O. Svelto, A. Killi, U. Morgner, M. Lederer, and D. Kopf, “Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses,” Opt. Lett. 29, 2626–2628 (2004).
[Crossref] [PubMed]

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

2003 (3)

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Light. Technol. 21, 246–253 (2003).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
[Crossref]

2002 (1)

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

2000 (1)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

1998 (2)

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

1996 (2)

M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices : principles, design and applications,” Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14, 423–428 (1996).
[Crossref]

Abe, M.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

Akca, B. I.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Ams, M.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Arriola, A.

Bacigalupo, C.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Baclig, A. C.

Barty, A.

Bedding, T.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Bento, J.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Betters, C.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

Caccavale, F.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14, 423–428 (1996).
[Crossref]

Caspers, P. J.

Cerullo, G.

Charles, N.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Chen, W.-J.

Chiodo, N.

Choo-Smith, L. P.

Coutts, D.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Cvetojevic, N.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

Dam, C. V.

M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices : principles, design and applications,” Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Da-Yong, L.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

de Ridder, R. M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
[Crossref] [PubMed]

Dreisow, F.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

F. Dreisow, Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany (personal communication, 2014).

Driessen, A.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
[Crossref] [PubMed]

Duluth, G.

P. L. Yuan and G. Duluth, “Optical device having low insertion loss,” US Patent5745618 (1998).

Eaton, S. M.

Ellis, S. C.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Feger, T.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Florea, C.

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Light. Technol. 21, 246–253 (2003).
[Crossref]

Fuerbach, A.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

García, J.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
[Crossref]

Gehler, J.

J. Gehler and F. Knappe, “Crosstalk Reduction of Arrayed Waveguide Gratings by UV trimming of individual waveguides without H2-Loading,” in Optical Fiber Communication ConferenceOSA Technical Digest Series (Optical Society of America, 2000), paper WM9.

Ghosh, S.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

Goldshtein, N.

R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
[Crossref]

Gross, S.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Heinrich, M.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Heng-Chang, G.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Herman, P. R.

Hibino, Y.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

Hida, Y.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

Himeno, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Hirao, K.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

Ho, S.

Hong, Y.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Hubner, J.

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

Inoue, Y.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

Ireland, M.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Ireland, M. J.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

Ishii, M.

T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).

Ismail, N.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
[Crossref] [PubMed]

Itoh, K.

Itoh, M.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Jovanovic, N.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Kalkman, J.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Kamiya, T.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

Kanehira, S.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Kar, A. K.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref] [PubMed]

Keil, R.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Killi, A.

Kitoh, T.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

Knappe, F.

J. Gehler and F. Knappe, “Crosstalk Reduction of Arrayed Waveguide Gratings by UV trimming of individual waveguides without H2-Loading,” in Optical Fiber Communication ConferenceOSA Technical Digest Series (Optical Society of America, 2000), paper WM9.

Kodate, K.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

Komai, Y.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

Kopf, D.

Kristensen, M.

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

Lacour, S.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Laporta, P.

Lawrence, J.

Lawrence, J. S.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Lederer, M.

Lehmann, A.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Leon-Saval, S. G.

Li, J.

Longhi, S.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Love, J.

A. W. Snyder and J. Love, Optical Waveguide Theory, (Springer Science & Business Media, 2012), Chap. 24.

Malone, K.

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

Mansour, I.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14, 423–428 (1996).
[Crossref]

Marom, D.

R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
[Crossref]

Marshall, G. D.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Mazur, E.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
[Crossref]

Miura, K.

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

Morgner, U.

Nagano, H.

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

Ng, M. L.

Nguyen, V. D.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Niel, C.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Nolte, S.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

Norris, B.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Note, Y.

Nugent, K. A.

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Okamoto, K.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Olaizola, S. M.

Osellame, R.

Paganin, D.

Pal, B. P.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

Parker, Q.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Pollnau, M.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
[Crossref] [PubMed]

Psaila, N. D.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

Puppels, G. J.

Qi-Huang, g.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Rizzuto, A.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Roberts, A.

Robertson, G.

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Robertson, J. G.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Saida, T.

T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).

Schaffer, C.

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
[Crossref]

Sengo, G.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Shibata, T.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).

Sinefeld, D.

R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
[Crossref]

Smit, M. K.

M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices : principles, design and applications,” Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. Love, Optical Waveguide Theory, (Springer Science & Business Media, 2012), Chap. 24.

Spaleniak, I.

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

Stewart, P.

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

Sun, F.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Suzuki, K.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

Svelto, O.

Szameit, A.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Taccheo, S.

Takada, K.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

Takahashi, H.

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).

Tanaka, T.

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

Thomson, R. R.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref] [PubMed]

Tuennermann, a.

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

Tünnermann, A.

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Tuthill, P. G.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Valle, G. D.

van Leeuwen, T. G.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

Varshney, R. K.

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

Watanabe, W.

Will, M.

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

Williams, R. J.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

Winick, K. A.

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Light. Technol. 21, 246–253 (2003).
[Crossref]

Withford, M.

Withford, M. J.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21, 2978–2986 (2013).
[Crossref] [PubMed]

I. Spaleniak, N. Jovanovic, S. Gross, M. J. Ireland, J. S. Lawrence, and M. J. Withford, “Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition,” Opt. Express 21, 27197–27208 (2013).
[Crossref] [PubMed]

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

Wörhoff, K.

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

N. Ismail, L. P. Choo-Smith, K. Wörhoff, A. Driessen, A. C. Baclig, P. J. Caspers, G. J. Puppels, R. M. de Ridder, and M. Pollnau, “Raman spectroscopy with an integrated arrayed-waveguide grating,” Opt. Lett. 36, 4629–4631 (2011).
[Crossref] [PubMed]

Yan, L.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Yan-Ping, D.

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Yuan, P. L.

P. L. Yuan and G. Duluth, “Optical device having low insertion loss,” US Patent5745618 (1998).

Zauner, D.

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

Zektzer, R.

R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
[Crossref]

Zhang, H.

Appl. Phys. A. (2)

S. Nolte, M. Will, J. Burghoff, and a. Tuennermann, “Femtosecond waveguide writing: A new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 109–111 (2003).
[Crossref]

C. Schaffer, J. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A. 76, 351–354 (2003).
[Crossref]

Appl. Phys. Lett. (2)

S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93, 023112 (2008).
[Crossref]

S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012).
[Crossref]

Astron. Astrophys. (1)

N. Cvetojevic, N. Jovanovic, C. Betters, J. S. Lawrence, S. C. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Chinese Phys. Lett (1)

L. Da-Yong, L. Yan, D. Yan-Ping, G. Heng-Chang, Y. Hong, and g. Qi-Huang, “Transverse writing of multimode interference waveguides inside silica glass by femtosecond laser pulses,” Chinese Phys. Lett. 25, 2500–2503 (2008).
[Crossref]

Electron. Lett. (2)

D. Zauner, J. Hubner, K. Malone, and M. Kristensen, “UV trimming of arrayed-waveguide grating wavelength division demultiplexers,” Electron. Lett. 34, 780–781 (1998).
[Crossref]

M. Abe, K. Takada, T. Tanaka, M. Itoh, T. Kitoh, and Y. Hibino, “Reduction in dispersion of silica-based AWG using photosensitive phase trimming technique,” Electron. Lett. 38, 1673–1675 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. I. Akca, V. D. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. G. van Leeuwen, M. Pollnau, K. Wörhoff, and R. M. de Ridder, “Toward spectral-domain optical coherence tomography on a chip,” IEEE J. Sel. Top. Quantum Electron. 18, 1223–1233 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, “Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides,” IEEE Photonics Technol. Lett. 12, 1180–1182 (2000).
[Crossref]

J. Light. Technol. (2)

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Light. Technol. 14, 423–428 (1996).
[Crossref]

C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Light. Technol. 21, 246–253 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Komai, H. Nagano, K. Kodate, K. Okamoto, and T. Kamiya, “Application of arrayed-waveguide grating to compact spectroscopic sensors,” Jpn. J. Appl. Phys. 43, 5795–5799 (2004).
[Crossref]

Laser Photonics Rev. (1)

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: Combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photonics Rev. 8, 1–5 (2014).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

N. Jovanovic, P. G. Tuthill, B. Norris, S. Gross, P. Stewart, N. Charles, S. Lacour, M. Ams, J. S. Lawrence, A. Lehmann, C. Niel, J. G. Robertson, G. D. Marshall, M. Ireland, A. Fuerbach, and M. J. Withford, “Starlight demonstration of the Dragonfly instrument : an integrated photonic pupil-remapping interferometer for high-contrast imaging,” Mon. Not. R. Astron. Soc. 427, 806–815 (2012).
[Crossref]

NTT Tech. Rev. (1)

K. Suzuki, Y. Hida, T. Shibata, Y. Inoue, H. Takahashi, and K. Okamoto, “Silica-based arrayed-waveguide gratings for the visible wavelength range,” NTT Tech. Rev. 4, 48–52 (2006).

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Geometric potential and transport in photonic topological crystals,” Phys. Rev. Lett. 104, 1–4 (2010).
[Crossref]

Proc. SPIE (1)

T. Feger, C. Bacigalupo, T. Bedding, J. Bento, D. Coutts, M. J. Ireland, Q. Parker, A. Rizzuto, and I. Spaleniak, “RHEA: the ultra-compact Replicable High-resolution Exoplanet Asteroseismology spectrograph,” Proc. SPIE 9147, 914771 (2014).

Sel. Top. Quantum Electron. (1)

M. K. Smit and C. V. Dam, “PHASAR-based WDM-devices : principles, design and applications,” Sel. Top. Quantum Electron. 2, 236–250 (1996).
[Crossref]

Other (6)

A. W. Snyder and J. Love, Optical Waveguide Theory, (Springer Science & Business Media, 2012), Chap. 24.

P. L. Yuan and G. Duluth, “Optical device having low insertion loss,” US Patent5745618 (1998).

R. Zektzer, D. Sinefeld, N. Goldshtein, and D. Marom, “Interferometric method for phase error measurement in an arrayed waveguide grating with a free space output,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2012), paper JTh2A.1
[Crossref]

J. Gehler and F. Knappe, “Crosstalk Reduction of Arrayed Waveguide Gratings by UV trimming of individual waveguides without H2-Loading,” in Optical Fiber Communication ConferenceOSA Technical Digest Series (Optical Society of America, 2000), paper WM9.

F. Dreisow, Institute of Applied Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany (personal communication, 2014).

T. Saida, T. Shibata, M. Ishii, and H. Takahashi, “Integrated optical tweezers using arrayed waveguide grating,” in Conference on Lasers and Electro-Optics OSATechnical Digest Series (Optical Society of America), paper CMEE6 pp. 556–558 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of an arrayed waveguide grating with its individual components.
Fig. 2
Fig. 2 (a) End-on image of strong cumulative heated waveguides overlapped with a 3 µm spacing. The depressed regions between the individual modifications are clearly visible and thus inhibit the fabrication of smooth slabs. (b) End-on view of a 200 µm wide slab waveguide with 0.4 µm multi-scan spacing. (c) Near-field output from a 6 mm long slab waveguide with 0.4 µm multi-scan spacing. Scale bar represents 25 µm.
Fig. 3
Fig. 3 Experimental and simulated near-field profiles of 633 nm light diffraction within a 200 µm wide slab waveguide at different propagation lengths. Light is injected into the slab via a 4 µm wide 1.5 × 10−3 index contrast single-mode input waveguide. The simulation assumes a slab index contrast of 1.5 × 10−3.
Fig. 4
Fig. 4 The FWHM of experimental slab modes of varying lengths were plotted against theoretical slab mode FWHMs for varying refractive index contrasts. The best fit for the refractive index contrast was found to be 1.5 × 10−3. The dash lines represent 95% prediction interval bounds of the fit.
Fig. 5
Fig. 5 (a) DIC image of a 200 µm wide slab. The insert shows ripples in the slab parallel to the writing direction. The markers indicate the edge of the slab region. (b) Example of a laser written taper. The laser modifications that form the slab on the bottom of the image are extended at variable lengths to form the tapers. The dots are formed when cumulative waveguide writing is suddenly stopped.
Fig. 6
Fig. 6 (a) and (b) are DIC images of an AWG prototype. (a) Shows the input FPZ while (b) shows the slab/waveguide transition. The white dotted line highlights the inner Rowland curvature.

Tables (1)

Tables Icon

Table 1 Experimental and theoretical taper transmission.

Metrics